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Software Ecosystems for 
Quantum Computing

Quantum computing promises new opportunities for 

solving hard computational problems, but harnessing 

this novelty will require breakthrough concepts in the 

design, operation, and application of computing 

systems. In this talk, we define some of the challenges 

facing the development of quantum computing systems 

as well as software-based approaches that can be used 

to overcome these challenges. 

Session 2: Quantum Computing
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The Future of Computing

• Social concerns driving persistent demand for 
computational power 

– Security, Commerce, Situational Awareness

– Sensing, Data Mining, Artificial Intelligence

– Scientific Discovery, Research, Engineering

• New computational power from advanced design, 
manufacturing, programming

– Multicore and parallel programming paradigms

– New materials and device concepts

– Hardware-software co-design

• Future devices must control quantum effects

– Device features already at nanoscale 
dimensions; 10 nm CMOS in 2016, 2017

– Quantum perturbations of short channel effects

Evolution in transistor gate length and chip density. 
Credit Frank Schwierz, Nature Nano. 5, 487 (2010)

Technology paths for future transistors to 5 nm scale
Credit: Adam Brand, Semicon West, August 2013
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Economist, 12 March 2016

After a glorious 50 years, Moore’s law—which states that computer power 
doubles every two years at the same cost—is running out of steam… 

…Quantum computers could offer a giant leap in speed—but only for 
certain applications.

.. A working quantum computer would be a boon—but no one is sure 
how much of one.

http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law
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Timeline of Quantum Computing

• Early 1990’s, quantum computing was codified to 
harness capabilities of quantum physics

– Compute with atomic, molecular, optical coherence

– Use ‘’inherent parallelism’’ of quantum systems

– Exponential speed ups over select classical algorithms

• For 20 years, most quantum technologies have 
remained in the proof of concept phase

– R&D with significant basic research investments

– Only a few mature examples, QRNG, QKD, D-Wave

– Left with a large, diverse quantum technology base

• In the 2010’s, research and development began to 
address system-level concerns
– Microarchitecture: instruction sets, layout

– Programming: logical, physical

– Macroarchitecture: technology, integration

– Performance: costs, efficiency, stability

Single-atom transistor. Credit UNSW

Superconducting qubit processor. Credit UCSB
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Scientific Applications of Quantum Computing

• Physical Modeling and Simulation

– Computational Chemistry, Material Science

– High-energy Physics, Quantum Field Theory

• Applied Mathematics

– Optimization, Graph Theory, Linear Algebra

– Placement, Scheduling, Routing

– Sampling, Search, Random Numbers

• Analysis

– Situational Awareness, Pattern Matching

– Machine Learning, Deep Belief Networks

– Scientific Data Mining, Anomaly Detection
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Electronic Structure Calculations

Energy Transfer Dynamics

Anomaly Detection

Isomerization reactions

Ground state sampling

High-throughput analysis
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Progress in Quantum Processing Units

• Programmable chips have been realized

– Proof-of-principle demonstrations

– Superconducting Josephson junctions

– Doped semiconductors quantum dots

– Electromagnetically trapped Ions

• Quantum algorithms have been implemented

– Search, Factoring, Chemistry, Machine Learning

– Multiple operations acting on multiple qubits

– Correct results obtained for simple cases with 
moderate statistical errors

– Logical operations not yet fault-tolerant

• Low-level quantum instruction control

– Early infrastructure for translating high-level 
languages into intermediate representations

– Variety of programming approaches

Superconducting chip from 
D-Wave Systems

Photonic QKD system 
from Id Quantique

Linear optical chip from 
Univ. Bristol

Diamond chip from Delft 
Univ. /UCSB

Superconducting chip 
from Google/UCSB

Ion trap chip from NIST
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Resource Hierarchy: The Temple of Doom

• Advances in ‘system’ integration have begun

– Scaling up to multi-qubit, fault-tolerant operations

– Battling noise and physical imperfections

– Quantum error correction for fault-tolerant operation

• Daunting task to abstract interfaces, layers

– Resources balloon with conservative estimates

– Wide open area of design and trade off studies

– Verification and validation of behavior difficult

• We need methods to measure performance

– Benchmark emerging devices

– Verify and validate claims

– Relativize performance of components

LOGICAL

FAULT TOLERANT

ACTIVE ERROR CORRECTION

PHYSICAL

Resources Required

Layered Architecture

Proposed stack for a fault-tolerant circuit-based system
Credit: Van Meter and Horsman (2013)
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HPC as a Use Case for QPU’s

• Massive parallel processing

– Support complex, large-scale problems that 
have significant time and memory demands

– Application codes need to be parallelized 
and capable of utilizing distributed resources

• State of the art in HPC

– Current systems 10-20 petaflops

– Plans indicate exaflops by early ’20’s

Titan HPC system composed from 18,688 compute 
nodes 

Future Summit HPC will have a peak performance of 
150 petaflops System Peta-flops Memory (TiB) Power (MW)

Tianhe-2 33.8 1,375 17.6

Titan 17.5 693.5 8.2

Sequioa 17.1 1,500 7.9

K 10.5 12.6

Mira 8.5 768 3.9

Top 5 HPC systems ranked by performance on LINPACK benchmark
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Hybrid High Performance Computing

• HPC Accelerator Architectures

– Heterogeneous, hierarchical systems use 
specialized processors to accelerate

– GPU’s – thousands of highly efficient cores

– Xeon Phi’s – hundreds of coherent vector units

– Other considerations: cost, power, acceptance

• Quantum processing units (QPU’s)
may be suitable as HPC accelerators

– This creates a hybrid computational model

– What functions do quantum processors excel at 
and when should they be used?

– Overhead to switch computational models?

– What are the behavioral and functional 
requirements placed on the processor?

– How will we benchmark these systems?

D-Wave 2X (Washington) Processor and support infrastructure 
Credit: D-Wave Systems, Inc.

Computer node with interconnect for Titan architecture
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High-Performance Computing with QPUs

• Integrating QPU’s with conventional HPC creates a mixed computational model

– A deterministic RAM-based controller driving a probabilistic processor

Shared Memory Machine

Quantum Processor Unit

Interconnect

QPU

Node Node

QPU

Node Node

Shared Memory Model
• Asymmetric multiprocessing system
• Simpler scheduling and programming models

Shared Resource Model
• Few QPU’s shared by multiple nodes
• Distributed but synchronized programs
• Balance between quantum and HPC designs

Quantum Accelerator Model
• Each Node has a dedicated QPU
• Fits existing distributed accelerator design
• Supplemented with quantum network

Node

QPUQPU

Node Node

QPU

Interconnect

Quantum Interconnect
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Forecasting System Performance

• Key characteristics for evaluating QPUs are the same as for other HPC components

• Absolute measures are the same, but relative measures are different

– Probabilistic success is a statistical measure that requires sampling

– Quantum computing does not always have a good metric for operations, e.g., Q-FLOPS?

• How do we quantify QPU performance for HPC stakeholders?

– Identify levels of abstraction, technology dependencies, use cases, bottlenecks 

Quality Absolute Relative Quantum

Performance Time to solution FLOPS Logical operations per sec (LOPS)

Efficiency Power Consumption FLOP / Watt LOP / Watt

Cost Budget FLOP / Dollar LOP / Dollar

Scaling Size/Time T1/(N*TN) Control line bottleneck

Portability User Adoption Lines of code Lines of code, Language constructs

rate*time = money
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ORNL Quantum Computing Institute

• ORNL interaction point for resources in quantum computing

– “to fosters collaborations that promote the use of theory, computation, and 

experiment for research and development of quantum computing system”

• The QCI leverages expertise across ORNL in the following disciplines:

• Membership includes over 50 staff, associates, and students

• Seminars, mailing list, newsletter, solicitations, conferences, publications

Computer Science 

Mathematics

Modeling and Simulation

Experimental Studies

Material Science

Physics

Imaging and Characterization

Electrical Engineering

quantum.ornl.gov
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Software Ecosystems for Quantum 
Computing

• Software is needed to address multiple 
aspects of quantum computing

– Applications and programming

– Execution and run-time

– Device and Architecture design 

• Modeling and simulation provides a 
useful proxy for hardware QPU’s

– Separation of concerns isolates functional 
requirements, manages complexity

– Quantum mechanics limits the range of 
exact simulation

Applications

ProgramRun-time

Architecture

Execution

Logic

Devices
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Performance Modeling and Simulation

• Models of hybrid HPC architectures help 
stakeholders set expectations, planning

– Priority is performance models at the node-
level

– This works for classical parallelism, domain 
decomposition methods

– Quantum parallelism across nodes is more 
complicated scaling

• Two problems need to be solved

– Forward problem: What is the performance 
of a fixed system design? Time-to-solution?

– Inverse problem: What system meets given 
performance requirements?

Problem/Program

HPC+QPU
Model

Performance 
Goals

Hardware
Constraints

Synthesized
Execution Model

Analysis

System 
Design

Performance
Predictions
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Device Modeling and Simulation

• Phosphorous donor atoms are embedded in a 
matrix of isotopically pure silicon

– Qubit encoded in the nuclear spin state of the 
donor atom

• 31P nuclear state is effectively isolated in the 
vacuum of a zero-spin 28Si matrix

– Dominant loss from isotopic impurities, magnetic 
field fluctuations, charge-traps

• High-fidelity model of a two-qubit device

– Integrate electromagnetic field solvers with 
quantum chemistry calculations

– Density function theory (DFT) orbital calculations 
to recover hyperfine coupling

Electron orbitals in phosphorous 
doped silicon

Integrated nanoscale electronic 
control gates

Illustration: Bryan Christie Design
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Device Modeling and Simulation

• Phosphorous donor atoms are embedded in a 
matrix of isotopically pure silicon

– Qubit encoded in the nuclear spin state of the 
donor atom

• 31P nuclear state is effectively isolated in the 
vacuum of a zero-spin 28Si matrix

– Dominant loss from isotopic impurities, magnetic 
field fluctuations, charge-traps

• High-fidelity model of a two-qubit device

– Integrate electromagnetic field solvers with 
quantum chemistry calculations

– Density function theory (DFT) orbital calculations 
to recover hyperfine coupling

Single-spin device from Laucht et al. 
(March 2015)

ORNL model of UNSW device 
(March 2016)
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Device Modeling and Simulation

• Electron orbital density for 31P in 28Si nanocrystal (3 nm)

– DFT calculations

– 80% charge isosurface

– Uniform field Z-field

– Hydrogen-like orbital



18 © 2016 Travis S. Humble

Device Design Sequence

• Flow Chart of Design Process

1. System Specification1. System Specification

Early Physical DesignEarly Physical Design
2. Architectural Design2. Architectural Design

3. Functional Design3. Functional Design

4. Logic Design4. Logic Design

5. Circuit Design5. Circuit Design

6. Physical Design6. Physical Design

7. Fabrication7. Fabrication

8. Testing8. Testing

Layout VerificationLayout Verification

Logic VerificationLogic Verification

Circuit VerificationCircuit Verification
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Abstract Machine Models for Hybrid HPC

• Models of QPU’s and controllers

– Use SST to model nodes, memory 
hierarchy, network, execution

– Custom QPU, QRAM components

• Discrete event simulations to account 
for data movement, latency, power

– Profile application performance against 
small scale kernels

– Extrapolate run-time behavior using 
scaling tools, e.g. xSim

• Early observations stress memory 
management

– Fault-tolerant operations emphasize 
data movement, classical processing 

#ifdef USING_CLASSICAL
...

CheMPS2::FCI(Ham, Nel_up, Nel_down, Irreps[counter], 
maxMemWorkMB, FCIverbose);

...
#elif USING_SSTMAC
/* pretend computation takes 0.1us per iteration */

nloop = nintervals/size + ((rank < max_rank);  
SSTMAC_compute(nloop * 1e-7);

#endif
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Interconnect Design and Simulation

• Quantum interconnects are essential for advanced QPU-QPU programming

– Distributed QPU’s for fault-tolerant controllability, infrastructure limitations

– Software-defined networking may help manage heterogeneous devices

Node 1

QNIC 1

CNIC 1

Classical 
Switch

Classical 
network 
traffic Quantum 

Switch

Quantum 
network 
traffic

Node 2

QNIC 2

CNIC 2

Node 3

QNIC 3

CNIC 3

Controller

Switching messages

Control messages
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Quantum Network Simulation

• Node and switch software and middleware layers operate independently of the 
hardware, so we use numerical simulations to test them.

Wireshark running on mininet nodes and DSPY running on 
quantum simulator capture complete quantum network 
behavior

Mininet environment with 
nodes and switches connected 
to quantum network simulator

Node Node Node

C-Switch Q-Switch

Controller

Quantum Simulator

Mininet
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Split-execution Computing Model

• Software execution split across different hardware

– Example: CPU-GPU accelerators

– Off-load certain computations to performance optimal 
platform

– Requires code refactoring to utilize quantum primitives

– What software requirements emerge for the application?

• DW2X is a third generation quantum processor

– Programmable superconducting integrated circuit

– 1152-qubit register in a 2D Chimera layout

– EM shielding, UHV, cooled to 14mK

– A special-purpose optimization solver

Shared Memory Machine

Quantum Processing Unit

Unit cell of flux qubits Credit: 
Harris et al., Phys Rev B (2010)
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QPU Integration Design

• Loose integration vs. tight integration

HPC

CPU

CPU

CPU

QC

Shielded Room

Dilution 
Refrigerator

QPU

Pulse 
Tube

Control & 
Vacuum 
System

Cryogen 
Pump

Server

HPC

CPU

CPU

CPU

QPU

QPU

QPU
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Programming the Processor

• Logical problem statements are cast as 

quadratic optimization problems

– QUBO problems are mapped to Ising 
models

• Computation by quantum annealing

– Prepares the energetic ground state of H(t)

– Dynamics driven by energetic minimization

H (t) - hiZi - JijZiZ j - f t( )Xi
i


i, j>i


i



f x1,..., xn( )  c0 + cixi
i1

n

 + cij xix j
1£i< j£n



Schematic of Ising model energy landscape
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Simple Split-Execution Example

• Simplest Example: A single thread pushes a task to a QCP (quantum coprocessor)

4. Issue instructions

QPU

Repeat

7. Receive readout

CPU Interface QRAM

1. Send program

3. Compile program to ISA

8. Parse readout

10. Return solution

5. Parse instructions 
to gates

6. Execute gates

QCU

2. Parse program

9. Parse results
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Simple Split-Execution Example

• Simplest Example: A single thread pushes a task to a QCP (quantum coprocessor)

4. Issue instructions

QPU

Repeat

7. Receive readout

CPU Interface QRAM

1. Send program

3. Compile program to ISA

8. Parse readout

10. Return solution

5. Parse instructions 
to gates

6. Execute gates

QCU

2. Parse program

9. Parse results

1

3

2
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Integrated Development Environments

• Eclipse-based development environment for reducing 
problems to programs

– Multi-stage parameter setting, graph processing

– Map QUBO to ISING, 

– Embed ISING into Hardware

– Server-client connection with QPU, simulator

– Remote connection to D-Wave QPU 

Compilation sequence for quantum program

Logical connectivity

Embedding

D-Wave unit cell
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ICE-QI

• Interactive programming environment

– End-to-end workflow for solving with D-Wave

– Job management using DWS SAPI 

– Efficient collection and storage of results, 
program data, and trends
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Model of an Optimization Application

• ASPEN modeling language to 
represent machine and program

• Machine includes CPU-QPU 
interactions, clock rates, memory

– Highlights 3 execution stages

– Stage 1: Pre-processing

– Stage 2: Execution

– Stage 3: Post-processing

• Analysis extracts timing results 
for problem size, accuracy goals
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Simulated Timings using ASPEN

• Predict timings for each stage at sizes larger 
than currently possible with hardware

– Full program execution cycle

– Compare timings at small scales

– Identify bottlenecks in methods simulated

Stage 1: Preprocessing

Stage 2: Execution

Stage 3: Post-processing

model

actual

qubits needed

size
size32

~10-7

~10-3

accuracy

O(size3)
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Quantum Run-time Environment

• Software is the leading bottleneck in the previous 
execution model

– It was a simple approach for run-time compilation

– Faster, inline libraries are needed to mitigate 
slowdown from embedding

– Linkable libraries in fast, compiled language

• Can we push pre-processing off-line, mitigate costs?

– Just-in-time compilation for minor embedding
Run-time
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The Next Generation of QPU’s

• D-Wave provides a significant test platform

– Exposes programming interfaces, raises benchmark 
questions

– Hardware constraints impact programming model

• Future processors will be more complicated

– Examples: Chips from IBM, Google, IARPA

– Fault-tolerant protocols developed but not yet tested

• Infrastructure will remain, bulky, extensive, 
bottleneck

– State-of-the-art chips are limited by precision of 
classical signal generators

– Noise in magnetic, electronics, and optical systems 
limits controllability of qubits 

• Emerging software community

– QxBranch, Artise-QB, Rigetti, 1QBit
Error correcting processor from Google (2015)

Four-qubit SC device from IBM (2015)
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• Quantum computing offers a compelling but 
challenging technology for beyond CMOS

– It integrates with existing computing paradigm 
but pushes hardware and software changes

– Aggressive hardware development is not yet 
able to inform HPC design decisions

– Currently there is a large uncertainty in 
performance due to engineering challenges

• Modeling and simulation offer proxies for 
performance expectations

– Results highly dependent on design; 
extrapolation of behavior is risky

– Sets a big picture to measure progress

– Creates an ecosystem for software solutions

Looking Beyond CMOS Technology for Future HPC

Software Ecosystems for Quantum Computing

Applications

ProgramRun-time

Architecture

Execution

Logic

Devices

Node

QPUQPU

Node Node

QPU

Interconnect

Quantum Interconnect
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