
Looking Beyond CMOS Technology for Future HPC

Travis Humble
Quantum Computing Institute
Oak Ridge National Laboratory

April 5, 2016 Hanover, Maryland

Software Ecosystems for
Quantum Computing

Quantum computing promises new opportunities for

solving hard computational problems, but harnessing

this novelty will require breakthrough concepts in the

design, operation, and application of computing

systems. In this talk, we define some of the challenges

facing the development of quantum computing systems

as well as software-based approaches that can be used

to overcome these challenges.

Session 2: Quantum Computing

2 © 2016 Travis S. Humble

The Future of Computing

• Social concerns driving persistent demand for
computational power

– Security, Commerce, Situational Awareness

– Sensing, Data Mining, Artificial Intelligence

– Scientific Discovery, Research, Engineering

• New computational power from advanced design,
manufacturing, programming

– Multicore and parallel programming paradigms

– New materials and device concepts

– Hardware-software co-design

• Future devices must control quantum effects

– Device features already at nanoscale
dimensions; 10 nm CMOS in 2016, 2017

– Quantum perturbations of short channel effects

Evolution in transistor gate length and chip density.
Credit Frank Schwierz, Nature Nano. 5, 487 (2010)

Technology paths for future transistors to 5 nm scale
Credit: Adam Brand, Semicon West, August 2013

STI
Oxide

Fin

 Si FinFET

STI
Oxide

IIIV
Fin

Ge
Fin

New Fin
Material

STI
Oxide

n22, n14 n10, n7

n5, n3

Si/Ge FinFET

3 © 2016 Travis S. Humble

Economist, 12 March 2016

After a glorious 50 years, Moore’s law—which states that computer power
doubles every two years at the same cost—is running out of steam…

…Quantum computers could offer a giant leap in speed—but only for
certain applications.

.. A working quantum computer would be a boon—but no one is sure
how much of one.

http://www.economist.com/technology-quarterly/2016-03-12/after-moores-law

4 © 2016 Travis S. Humble

Timeline of Quantum Computing

• Early 1990’s, quantum computing was codified to
harness capabilities of quantum physics

– Compute with atomic, molecular, optical coherence

– Use ‘’inherent parallelism’’ of quantum systems

– Exponential speed ups over select classical algorithms

• For 20 years, most quantum technologies have
remained in the proof of concept phase

– R&D with significant basic research investments

– Only a few mature examples, QRNG, QKD, D-Wave

– Left with a large, diverse quantum technology base

• In the 2010’s, research and development began to
address system-level concerns
– Microarchitecture: instruction sets, layout

– Programming: logical, physical

– Macroarchitecture: technology, integration

– Performance: costs, efficiency, stability

Single-atom transistor. Credit UNSW

Superconducting qubit processor. Credit UCSB

5 © 2016 Travis S. Humble

Scientific Applications of Quantum Computing

• Physical Modeling and Simulation

– Computational Chemistry, Material Science

– High-energy Physics, Quantum Field Theory

• Applied Mathematics

– Optimization, Graph Theory, Linear Algebra

– Placement, Scheduling, Routing

– Sampling, Search, Random Numbers

• Analysis

– Situational Awareness, Pattern Matching

– Machine Learning, Deep Belief Networks

– Scientific Data Mining, Anomaly Detection

H -
2

2mi
Ñi
2

i1

n

 -
eiej
riji¹ j

n

+++
< ji

jiij
i

ii SSJSJJE)()()()(0

Electronic Structure Calculations

Energy Transfer Dynamics

Anomaly Detection

Isomerization reactions

Ground state sampling

High-throughput analysis

6 © 2016 Travis S. Humble

Progress in Quantum Processing Units

• Programmable chips have been realized

– Proof-of-principle demonstrations

– Superconducting Josephson junctions

– Doped semiconductors quantum dots

– Electromagnetically trapped Ions

• Quantum algorithms have been implemented

– Search, Factoring, Chemistry, Machine Learning

– Multiple operations acting on multiple qubits

– Correct results obtained for simple cases with
moderate statistical errors

– Logical operations not yet fault-tolerant

• Low-level quantum instruction control

– Early infrastructure for translating high-level
languages into intermediate representations

– Variety of programming approaches

Superconducting chip from
D-Wave Systems

Photonic QKD system
from Id Quantique

Linear optical chip from
Univ. Bristol

Diamond chip from Delft
Univ. /UCSB

Superconducting chip
from Google/UCSB

Ion trap chip from NIST

7 © 2016 Travis S. Humble

Resource Hierarchy: The Temple of Doom

• Advances in ‘system’ integration have begun

– Scaling up to multi-qubit, fault-tolerant operations

– Battling noise and physical imperfections

– Quantum error correction for fault-tolerant operation

• Daunting task to abstract interfaces, layers

– Resources balloon with conservative estimates

– Wide open area of design and trade off studies

– Verification and validation of behavior difficult

• We need methods to measure performance

– Benchmark emerging devices

– Verify and validate claims

– Relativize performance of components

LOGICAL

FAULT TOLERANT

ACTIVE ERROR CORRECTION

PHYSICAL

Resources Required

Layered Architecture

Proposed stack for a fault-tolerant circuit-based system
Credit: Van Meter and Horsman (2013)

8 © 2016 Travis S. Humble

HPC as a Use Case for QPU’s

• Massive parallel processing

– Support complex, large-scale problems that
have significant time and memory demands

– Application codes need to be parallelized
and capable of utilizing distributed resources

• State of the art in HPC

– Current systems 10-20 petaflops

– Plans indicate exaflops by early ’20’s

Titan HPC system composed from 18,688 compute
nodes

Future Summit HPC will have a peak performance of
150 petaflops System Peta-flops Memory (TiB) Power (MW)

Tianhe-2 33.8 1,375 17.6

Titan 17.5 693.5 8.2

Sequioa 17.1 1,500 7.9

K 10.5 12.6

Mira 8.5 768 3.9

Top 5 HPC systems ranked by performance on LINPACK benchmark

9 © 2016 Travis S. Humble

Hybrid High Performance Computing

• HPC Accelerator Architectures

– Heterogeneous, hierarchical systems use
specialized processors to accelerate

– GPU’s – thousands of highly efficient cores

– Xeon Phi’s – hundreds of coherent vector units

– Other considerations: cost, power, acceptance

• Quantum processing units (QPU’s)
may be suitable as HPC accelerators

– This creates a hybrid computational model

– What functions do quantum processors excel at
and when should they be used?

– Overhead to switch computational models?

– What are the behavioral and functional
requirements placed on the processor?

– How will we benchmark these systems?

D-Wave 2X (Washington) Processor and support infrastructure
Credit: D-Wave Systems, Inc.

Computer node with interconnect for Titan architecture

10 © 2016 Travis S. Humble

High-Performance Computing with QPUs

• Integrating QPU’s with conventional HPC creates a mixed computational model

– A deterministic RAM-based controller driving a probabilistic processor

Shared Memory Machine

Quantum Processor Unit

Interconnect

QPU

Node Node

QPU

Node Node

Shared Memory Model
• Asymmetric multiprocessing system
• Simpler scheduling and programming models

Shared Resource Model
• Few QPU’s shared by multiple nodes
• Distributed but synchronized programs
• Balance between quantum and HPC designs

Quantum Accelerator Model
• Each Node has a dedicated QPU
• Fits existing distributed accelerator design
• Supplemented with quantum network

Node

QPUQPU

Node Node

QPU

Interconnect

Quantum Interconnect

11 © 2016 Travis S. Humble

Forecasting System Performance

• Key characteristics for evaluating QPUs are the same as for other HPC components

• Absolute measures are the same, but relative measures are different

– Probabilistic success is a statistical measure that requires sampling

– Quantum computing does not always have a good metric for operations, e.g., Q-FLOPS?

• How do we quantify QPU performance for HPC stakeholders?

– Identify levels of abstraction, technology dependencies, use cases, bottlenecks

Quality Absolute Relative Quantum

Performance Time to solution FLOPS Logical operations per sec (LOPS)

Efficiency Power Consumption FLOP / Watt LOP / Watt

Cost Budget FLOP / Dollar LOP / Dollar

Scaling Size/Time T1/(N*TN) Control line bottleneck

Portability User Adoption Lines of code Lines of code, Language constructs

rate*time = money

12 © 2016 Travis S. Humble

ORNL Quantum Computing Institute

• ORNL interaction point for resources in quantum computing

– “to fosters collaborations that promote the use of theory, computation, and

experiment for research and development of quantum computing system”

• The QCI leverages expertise across ORNL in the following disciplines:

• Membership includes over 50 staff, associates, and students

• Seminars, mailing list, newsletter, solicitations, conferences, publications

Computer Science

Mathematics

Modeling and Simulation

Experimental Studies

Material Science

Physics

Imaging and Characterization

Electrical Engineering

quantum.ornl.gov

13 © 2016 Travis S. Humble

Software Ecosystems for Quantum
Computing

• Software is needed to address multiple
aspects of quantum computing

– Applications and programming

– Execution and run-time

– Device and Architecture design

• Modeling and simulation provides a
useful proxy for hardware QPU’s

– Separation of concerns isolates functional
requirements, manages complexity

– Quantum mechanics limits the range of
exact simulation

Applications

ProgramRun-time

Architecture

Execution

Logic

Devices

14 © 2016 Travis S. Humble

Performance Modeling and Simulation

• Models of hybrid HPC architectures help
stakeholders set expectations, planning

– Priority is performance models at the node-
level

– This works for classical parallelism, domain
decomposition methods

– Quantum parallelism across nodes is more
complicated scaling

• Two problems need to be solved

– Forward problem: What is the performance
of a fixed system design? Time-to-solution?

– Inverse problem: What system meets given
performance requirements?

Problem/Program

HPC+QPU
Model

Performance
Goals

Hardware
Constraints

Synthesized
Execution Model

Analysis

System
Design

Performance
Predictions

15 © 2016 Travis S. Humble

Device Modeling and Simulation

• Phosphorous donor atoms are embedded in a
matrix of isotopically pure silicon

– Qubit encoded in the nuclear spin state of the
donor atom

• 31P nuclear state is effectively isolated in the
vacuum of a zero-spin 28Si matrix

– Dominant loss from isotopic impurities, magnetic
field fluctuations, charge-traps

• High-fidelity model of a two-qubit device

– Integrate electromagnetic field solvers with
quantum chemistry calculations

– Density function theory (DFT) orbital calculations
to recover hyperfine coupling

Electron orbitals in phosphorous
doped silicon

Integrated nanoscale electronic
control gates

Illustration: Bryan Christie Design

16 © 2016 Travis S. Humble

Device Modeling and Simulation

• Phosphorous donor atoms are embedded in a
matrix of isotopically pure silicon

– Qubit encoded in the nuclear spin state of the
donor atom

• 31P nuclear state is effectively isolated in the
vacuum of a zero-spin 28Si matrix

– Dominant loss from isotopic impurities, magnetic
field fluctuations, charge-traps

• High-fidelity model of a two-qubit device

– Integrate electromagnetic field solvers with
quantum chemistry calculations

– Density function theory (DFT) orbital calculations
to recover hyperfine coupling

Single-spin device from Laucht et al.
(March 2015)

ORNL model of UNSW device
(March 2016)

17 © 2016 Travis S. Humble

Device Modeling and Simulation

• Electron orbital density for 31P in 28Si nanocrystal (3 nm)

– DFT calculations

– 80% charge isosurface

– Uniform field Z-field

– Hydrogen-like orbital

18 © 2016 Travis S. Humble

Device Design Sequence

• Flow Chart of Design Process

1. System Specification1. System Specification

Early Physical DesignEarly Physical Design
2. Architectural Design2. Architectural Design

3. Functional Design3. Functional Design

4. Logic Design4. Logic Design

5. Circuit Design5. Circuit Design

6. Physical Design6. Physical Design

7. Fabrication7. Fabrication

8. Testing8. Testing

Layout VerificationLayout Verification

Logic VerificationLogic Verification

Circuit VerificationCircuit Verification

19 © 2016 Travis S. Humble

Device Design Sequence

• Flow Chart of Design Process

1. System Specification1. System Specification

Early Physical DesignEarly Physical Design
2. Architectural Design2. Architectural Design

3. Functional Design3. Functional Design

4. Logic Design4. Logic Design

5. Circuit Design5. Circuit Design

6. Physical Design6. Physical Design

7. Fabrication7. Fabrication

8. Testing8. Testing

Layout VerificationLayout Verification

Logic VerificationLogic Verification

Circuit VerificationCircuit Verification

Requirements Management Tool

Design Capture Tool

Logic Synthesis

Circuit Synthesis

Layout Synthesis Tool

Behavioral Simulator

Circuit Simulator

Circuit Extractor Tool

20 © 2016 Travis S. Humble

Device Design Sequence

• Flow Chart of Design Process

1. System Specification1. System Specification

Early Physical DesignEarly Physical Design
2. Architectural Design2. Architectural Design

3. Functional Design3. Functional Design

4. Logic Design4. Logic Design

5. Circuit Design5. Circuit Design

6. Physical Design6. Physical Design

7. Fabrication7. Fabrication

8. Testing8. Testing

Layout VerificationLayout Verification

Logic VerificationLogic Verification

Circuit VerificationCircuit Verification

Requirements Management Tool

Design Capture Tool

Logic Synthesis

Circuit Synthesis

Layout Synthesis Tool

Behavioral Simulator

Circuit Simulator

Circuit Extractor Tool

21 © 2016 Travis S. Humble

Device Design Sequence

• Flow Chart of Design Process

1. System Specification1. System Specification

Early Physical DesignEarly Physical Design
2. Architectural Design2. Architectural Design

3. Functional Design3. Functional Design

4. Logic Design4. Logic Design

5. Circuit Design5. Circuit Design

6. Physical Design6. Physical Design

7. Fabrication7. Fabrication

8. Testing8. Testing

Layout VerificationLayout Verification

Logic VerificationLogic Verification

Circuit VerificationCircuit Verification

Requirements Management Tool

Design Capture Tool

Logic Synthesis

Circuit Synthesis

Layout Synthesis Tool

Behavioral Simulator

Circuit Simulator

Circuit Extractor Tool

22 © 2016 Travis S. Humble

Abstract Machine Models for Hybrid HPC

• Models of QPU’s and controllers

– Use SST to model nodes, memory
hierarchy, network, execution

– Custom QPU, QRAM components

• Discrete event simulations to account
for data movement, latency, power

– Profile application performance against
small scale kernels

– Extrapolate run-time behavior using
scaling tools, e.g. xSim

• Early observations stress memory
management

– Fault-tolerant operations emphasize
data movement, classical processing

#ifdef USING_CLASSICAL
...

CheMPS2::FCI(Ham, Nel_up, Nel_down, Irreps[counter],
maxMemWorkMB, FCIverbose);

...
#elif USING_SSTMAC
/* pretend computation takes 0.1us per iteration */

nloop = nintervals/size + ((rank < max_rank);
SSTMAC_compute(nloop * 1e-7);

#endif

23 © 2016 Travis S. Humble

Interconnect Design and Simulation

• Quantum interconnects are essential for advanced QPU-QPU programming

– Distributed QPU’s for fault-tolerant controllability, infrastructure limitations

– Software-defined networking may help manage heterogeneous devices

Node 1

QNIC 1

CNIC 1

Classical
Switch

Classical
network
traffic Quantum

Switch

Quantum
network
traffic

Node 2

QNIC 2

CNIC 2

Node 3

QNIC 3

CNIC 3

Controller

Switching messages

Control messages

24 © 2016 Travis S. Humble

Quantum Network Simulation

• Node and switch software and middleware layers operate independently of the
hardware, so we use numerical simulations to test them.

Wireshark running on mininet nodes and DSPY running on
quantum simulator capture complete quantum network
behavior

Mininet environment with
nodes and switches connected
to quantum network simulator

Node Node Node

C-Switch Q-Switch

Controller

Quantum Simulator

Mininet

25 © 2016 Travis S. Humble

Split-execution Computing Model

• Software execution split across different hardware

– Example: CPU-GPU accelerators

– Off-load certain computations to performance optimal
platform

– Requires code refactoring to utilize quantum primitives

– What software requirements emerge for the application?

• DW2X is a third generation quantum processor

– Programmable superconducting integrated circuit

– 1152-qubit register in a 2D Chimera layout

– EM shielding, UHV, cooled to 14mK

– A special-purpose optimization solver

Shared Memory Machine

Quantum Processing Unit

Unit cell of flux qubits Credit:
Harris et al., Phys Rev B (2010)

26 © 2016 Travis S. Humble

QPU Integration Design

• Loose integration vs. tight integration

HPC

CPU

CPU

CPU

QC

Shielded Room

Dilution
Refrigerator

QPU

Pulse
Tube

Control &
Vacuum
System

Cryogen
Pump

Server

HPC

CPU

CPU

CPU

QPU

QPU

QPU

27 © 2016 Travis S. Humble

QPU Integration Design

• Loose integration vs. tight integration

HPC

CPU

CPU

CPU

QC

Shielded Room

Dilution
Refrigerator

QPU

Pulse
Tube

Control &
Vacuum
System

Cryogen
Pump

Server

HPC

CPU

CPU

CPU

QPU

QPU

QPU

28 © 2016 Travis S. Humble

Programming the Processor

• Logical problem statements are cast as

quadratic optimization problems

– QUBO problems are mapped to Ising
models

• Computation by quantum annealing

– Prepares the energetic ground state of H(t)

– Dynamics driven by energetic minimization

H (t) - hiZi - JijZiZ j - f t()Xi
i

i, j>i

i

f x1,..., xn() c0 + cixi
i1

n

 + cij xix j
1£i< j£n

Schematic of Ising model energy landscape

29 © 2016 Travis S. Humble

Simple Split-Execution Example

• Simplest Example: A single thread pushes a task to a QCP (quantum coprocessor)

4. Issue instructions

QPU

Repeat

7. Receive readout

CPU Interface QRAM

1. Send program

3. Compile program to ISA

8. Parse readout

10. Return solution

5. Parse instructions
to gates

6. Execute gates

QCU

2. Parse program

9. Parse results

30 © 2016 Travis S. Humble

Simple Split-Execution Example

• Simplest Example: A single thread pushes a task to a QCP (quantum coprocessor)

4. Issue instructions

QPU

Repeat

7. Receive readout

CPU Interface QRAM

1. Send program

3. Compile program to ISA

8. Parse readout

10. Return solution

5. Parse instructions
to gates

6. Execute gates

QCU

2. Parse program

9. Parse results

1

3

2

31 © 2016 Travis S. Humble

Integrated Development Environments

• Eclipse-based development environment for reducing
problems to programs

– Multi-stage parameter setting, graph processing

– Map QUBO to ISING,

– Embed ISING into Hardware

– Server-client connection with QPU, simulator

– Remote connection to D-Wave QPU

Compilation sequence for quantum program

Logical connectivity

Embedding

D-Wave unit cell

32 © 2016 Travis S. Humble

ICE-QI

• Interactive programming environment

– End-to-end workflow for solving with D-Wave

– Job management using DWS SAPI

– Efficient collection and storage of results,
program data, and trends

33 © 2016 Travis S. Humble

Model of an Optimization Application

• ASPEN modeling language to
represent machine and program

• Machine includes CPU-QPU
interactions, clock rates, memory

– Highlights 3 execution stages

– Stage 1: Pre-processing

– Stage 2: Execution

– Stage 3: Post-processing

• Analysis extracts timing results
for problem size, accuracy goals

34 © 2016 Travis S. Humble

Model of an Optimization Application

• ASPEN modeling language to
represent machine and program

• Machine includes CPU-QPU
interactions, clock rates, memory

– Highlights 3 execution stages

– Stage 1: Pre-processing

– Stage 2: Execution

– Stage 3: Post-processing

• Analysis extracts timing results
for problem size, accuracy goals

35 © 2016 Travis S. Humble

Model of an Optimization Application

• ASPEN modeling language to
represent machine and program

• Machine includes CPU-QPU
interactions, clock rates, memory

– Highlights 3 execution stages

– Stage 1: Pre-processing

– Stage 2: Execution

– Stage 3: Post-processing

• Analysis extracts timing results
for problem size, accuracy goals

36 © 2016 Travis S. Humble

Model of an Optimization Application

• ASPEN modeling language to
represent machine and program

• Machine includes CPU-QPU
interactions, clock rates, memory

– Highlights 3 execution stages

– Stage 1: Pre-processing

– Stage 2: Execution

– Stage 3: Post-processing

• Analysis extracts timing results
for problem size, accuracy goals

37 © 2016 Travis S. Humble

Simulated Timings using ASPEN

• Predict timings for each stage at sizes larger
than currently possible with hardware

– Full program execution cycle

– Compare timings at small scales

– Identify bottlenecks in methods simulated

Stage 1: Preprocessing

Stage 2: Execution

Stage 3: Post-processing

model

actual

qubits needed

size
size32

~10-7

~10-3

accuracy

O(size3)

38 © 2016 Travis S. Humble

Quantum Run-time Environment

• Software is the leading bottleneck in the previous
execution model

– It was a simple approach for run-time compilation

– Faster, inline libraries are needed to mitigate
slowdown from embedding

– Linkable libraries in fast, compiled language

• Can we push pre-processing off-line, mitigate costs?

– Just-in-time compilation for minor embedding
Run-time

39 © 2016 Travis S. Humble

The Next Generation of QPU’s

• D-Wave provides a significant test platform

– Exposes programming interfaces, raises benchmark
questions

– Hardware constraints impact programming model

• Future processors will be more complicated

– Examples: Chips from IBM, Google, IARPA

– Fault-tolerant protocols developed but not yet tested

• Infrastructure will remain, bulky, extensive,
bottleneck

– State-of-the-art chips are limited by precision of
classical signal generators

– Noise in magnetic, electronics, and optical systems
limits controllability of qubits

• Emerging software community

– QxBranch, Artise-QB, Rigetti, 1QBit
Error correcting processor from Google (2015)

Four-qubit SC device from IBM (2015)

40 © 2016 Travis S. Humble

• Quantum computing offers a compelling but
challenging technology for beyond CMOS

– It integrates with existing computing paradigm
but pushes hardware and software changes

– Aggressive hardware development is not yet
able to inform HPC design decisions

– Currently there is a large uncertainty in
performance due to engineering challenges

• Modeling and simulation offer proxies for
performance expectations

– Results highly dependent on design;
extrapolation of behavior is risky

– Sets a big picture to measure progress

– Creates an ecosystem for software solutions

Looking Beyond CMOS Technology for Future HPC

Software Ecosystems for Quantum Computing

Applications

ProgramRun-time

Architecture

Execution

Logic

Devices

Node

QPUQPU

Node Node

QPU

Interconnect

Quantum Interconnect

Looking Beyond CMOS Technology for Future HPC

Travis Humble
Quantum Computing Institute
Oak Ridge National Laboratory

April 5, 2016 Hanover, Maryland

Software Ecosystems for
Quantum Computing

Parts of this presentation were developed in

collaboration with these outstanding scientists:

Keith Britt, Alex McCaskey, Jonathan Schrock,
Neena Imam, Terry Jones, Eugene Dumitrescu,
Kathleen Hamilton, Ron Sadlier, Ryan Prout, Brian
Williams, Ryan Bennink, Raphael Pooser, Jason
Laska, Erik Ferragut, Jay Billings, Mark Pleszkoch,
Ed D’Azevedo, Blair Sullivan, Christine Klymko,
Timothy Goodrich, Had Seddiqi, Thomas Naughton,
Jim Kohl, Kirk Sayre, Wael Elwasif, Tom Karnowski,
Cory Hauck, Jeremy Meredith, Jeff Vetter

THANK YOU

