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@ SFQ Fab is Not Dumbed-Down CMOS Fab

Cross Section of MIT-LL SFQ4ee Process
* Looks easy! 1990’'s CMOS backend Q

— Feature sizes > 0.25 um

— 8 metal layers ]_Junction
— Etched vias Layers
— No CMOS front end
Wiring
« Only needs 1990’s tool set Layers

— Sputtering tool

— Dielectric deposition
— CMP

— Plasma etch tool

— 248-nm lithography tool

200-mm SFQ4ee Wafer

e Butitis not

— Circuit performance critically dependent on
component values

— Metal & dielectric thickness to < 10%
— Junction uniformity < 1% (1o)

— Process temperatures < 150 °C

— Hydrogen incorporation is pernicious
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]@[ SFQ Circuit Technology Is Immature

Superconducting electronics will not succeed if we view Josephson
junctions as a drop-in replacement for CMOS transistors

 Cold, hard facts

|
— As posed today, SFQ will not have 1014 M3 //\
the same density as CMOS circuits ~ Gnm
— Have not developed an optimal ] / 96””“
. . . 10 16
circuit design approach \_26nm ¢ TFETs
— Nteed an effective solution for data :>>: » RSFO r.\ )f — o
storage 910 eISFQ Qf’; ,f'Logic
i\
e Cold, hard facts (Part 2) L% S /  SFQ
— SFQ information process is uniquely + ‘\\ Quantum
energy efficient oe S Climit AQFP
— SFQ circuits can be designed for 10-22 \\]:
10X higher clocks than CMOS t keTIN2@4K \Reversible)
— SFQ circuits have access to a 1024 Landauer limit" |
quantized reference (fluxon) 10-14 1012 1010 108
« Unique advantage for mixed-mode
signal processing Gate Delay (s)

Need to develop a computing paradigm that takes
s advantage of SFQ strengths




[E]

Outline

Short history of SFQ fabrication and circuit develop
State-of-the-art SFQ fabrication
Scaling limitations and EDA needs

Summary
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@ 15t Gen SFQ: Latching Logic
- IBM 1970’s to early 1980’s

 Logic gate formed from interferometric
circuits containing several Josephson
junctions
— Typically “AND” and “OR” gates
— Designed to latch a voltage state

— Bipolar power supply served as clock and
data reset

 Fabrication evolved to Nb base electrode
with Pb-In-Au counter electrode

— Junction formed on the edge of the Nb
electrode

— Minimum feature size was 2.5 um

e Cross Sectional Model (CSM) experiment
— 10 logic levels, chip-to-chip data flow
— 300 MHz clock

 Project halted in 1983
— No path to clocks > 1 GHz
— No viable memory
— Continued advance of Si circuits

Three junction Interferometric Logic Gate
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2"d Gen: Rapid Single Flux Quantum (RSFQ)
1990 — 2010’s

RSFQ design approach invented in
1985 at Moscow State University

— Several junctions per logic gate

— Bits encoded in short voltage pulses
— DC current bias

Fabrication based on Nb-AI-AlOx-Nb
trilayer junctions

— Invented in 1971 at IBM

— 4 Nb-layer standard process

— Additional layers added in last decade

Many significant circuit
demonstrations
— Single gate clock speed, 750 GHz

— 8-32 bit adders, multipliers, ALU at
clock speeds of 20 — 30 GHz

— Analog-to-digital converters with
sample rates >40 GHz

Circuits limited to ~20k JJs

Hypres 4-Metal Layer Process ®

MO M1 M2 M3 R3

Sio, R2

— 4 Nb wiring layers
— Feature size > 1um
— Typical junction I, 100pA, J. 1 - 4.5 kA/cm?

8-bit ALU with 20 GHz Clock
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@ 3'd Gen: No Bias Resistor Approaches
- RQL, eRSFQ, eSFQ

Conventional RSFO Biasing Reciprical Quantum Logqgic, ROL (Northrup Grumman)
- _ * AC Clock, no dc bias resistor dissipation
RESEINE DIEBIiY CelmiEiEs « Inductively coupled to RF signal line to power
power dISSIpa'[IOI’] . ..
devices / eliminates ground return
/’“"“ \ « Four-phase clock to provide directionality of the
Ro § Ro § SFQ pulse propagation
v Iy L Iy L « “1”s are encoded as areciprocal pair of SFQ
LYYV v Yy YYYL
. ) pulses
Py L1 L 1 N
e = D %ﬁ(j'E( T\ Schematic of ROL Shift Register Bit
v M Clock 1 [

eSFQ Circuit Design Approach (Hypres) — %7,
Input /"i

Parallel Out  SerialIn

* Replace R in bias circuit with L
— DC bias with minimal dissipation:

in JJ shunt resistors only during [ "=~ ==

an adap ~+ ~0.1 aJ/bit 8-bit Kogge-
— Can adapt standard RSFQ gates Stone ROL adder

to eSFQ

- 0.8 aJ/bit eSFQ shift register * 6.2GHz clock

& and deserializer test circuits*
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[

4th Gen: Adiabatic Quantum Flux
Parametron (AQFP)

The bit is created with two connected
loops, each with 1 JJ, inductively
coupled to the control lines

— Excitation current creates double-well
potential

— States ‘0’ and ‘1’ correspond to an SFQ
stored on either side of circuit / double
well potential

In adiabatic operation, manipulate
information without switching the JJs

— ‘Gradual’ rise/fall of excitation
current for adiabatic operation

— Switching energy << I-®,, can be at
Landauer limit

— In constrast, 34 gen SFQ switches
JJs — energy per bit ~ 1-®, = 1aJ

Several recent demonstrations
confirming the viability of the circuit
design approach

— Logic cells

— Adder circuits with up to 20k JJs

Input Current £,

Exciting “OP4 | 17
Current [, Ly, T * L.q
— i —
k& },_f fi-.);‘"
+—Ml
— g ra
| 4
1kl @8 @ixe

it

1 1 02 /'
822 =0 nitial

2 ‘.

8-Bit Kogge-Stone Adder

Architecture

Kogge-Stone

Fab Process

1.0 mm

STP2 2.5 kA/cm?

Number JJs 1224

Circuit area 1.74 x 0.99 mm?
Clock 5 GHz

Latency 1400 ps

Energy 16.4 aJ for B.=1.0
dissipation 10.9 aJ for B.=5.0

A;B; A¢Bg AsBs A;Bs A;B; AyB, A; B, AyB,
1L |1

S8y

Sy Sy S

Takeuchi, 2013
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Strategy for Advancing SFQ Fabrication

&
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Cross Section
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MIT-LL Process Progression

SFO-3ee (4-Metal-Layer, 500nm min features)

1um

gl AL i it il

SFO-4ee (8-Metal-Layers, 500nm min features)

Junction
Layers
Wiring
Layers

"

mQ resistor

High-K Layer/



]@[ Outline

e Short history of SFQ fabrication and circuit develop
=P . State-of-the-art SFQ fabrication
e Scaling limitations and EDA needs

e Summary
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@ Hypres 6-Metal Layer Process (Ripple-2)

_ Ripple-2 Cross Section
e 2 planarized layers beneath standard bb
4 metal layer process Diffusion stopping ayer

— 0.1 kA/lcm?, 4.5 kA/cm?2 and 10 kA/cm? . Passivation layer
Jc processes available TN

— Minimum wiring feature size
e 1 um for 4-layer process
¢ 0.25 um for 4+-layer process
— Minimum junction size: 1 um

. . . Mn1 = 200 nm f, Substrat!ej Mné =200 nm
 Working to add planarization to _
junction layers Substrate = S

N

[ O I
EAG HD2300 200kV x13.0k ZC ROEMJ470 2.00pm

Hypres Fabrication Tools

* 150-mm wafers, significant refresh in
2012

e ~2500 ft? of class 100/1000
e 248nm stepper

e Planarization using “Caldera” process

(etch + CM) for geometry independent
planariation
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|&] AIST-CRAVITY ADP2 9-Layer Process

9 Nb layers, M1-M7 planarized

Additional CMP and thick metal under
JJ layer

10kA/cm? and 20kA/cm? Jc processes
Minimum feature size: 1um

Minimum junction size: 1um

Mo resistors with 2.6 Q/sq

Circuits demonstrated 69k JJ (shift
register) and 19k JJ (logic)

AlIST/Cravity Fabrication Tools

AIST/Cravity ADP2 Process

Junction

Active layer
including
JJand R

M5

—

+DC power
J layer

Si Substrate

75-mm wafer tool set

2900 ft2, class 100/ 1000
cleanroom

I-line stepper
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@ D-Wave Systems 6-Metal Layer Process
- Fabricated at Cypress

D-Wave 6-Nb-Layer Process
» Fully planar 6-metal layer process

" brpcess Jo is 0.kajem? (or
qubits) . _ -

e Minimum feature size: 250nm

e Minimum junction size: ~500nm Resistor

e Circuits demonstrated with 125k
JJs

Cypress foundry in Bloomlngton MN

e 200-mm production tool set
e 80k ft2 class 10 cleanroom

e 90nm-350nm baseline flows in
production

* Development access to production
environment

« DMEA trusted foundry
« ~400 employees
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@ MIT-LL 8 Metal Layer Process

Fully planarized 4, 8, and 10 Nb wiring MIT-LL 8-Layer Nb Process

layers
Resistor R5

Minimum feature size 350 nm (248 nm \ ) ol

lithography)

Minimum junction size <500nm

10kA/cm?, 20kA/cm? and 50kA/cm?
(experimental) processes

Demonstrated circuits with ~70k JJs
(shift registers)

mQ resistor

High Kinetic Inductance
Layer

MIT-LL Fabrication Facility

e 200-mm production tool set
e 8k ft2 class 10 cleanroom

 90nm baseline flows in prototype circuit
guantities

* Multi-use facility: CMOS, Si imagers, Nb
SFQ, GaN on Si, MEMS, microfluidics

« DMEA trusted foundry
« ~ 65 dedicated staff; 24/5 operation

.
|
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IJARPA SFQ Technology Roadmap
(Government Foundry, MIT-LL)

Fabrication Process
Attribute

Process Node

SFQ5ee

SFQ6ee

SFQ7ee

Critical current density MA/m? 100 100 100 100 100 100
JJ diameter (surround) nm 700 (500) 700 (500) | 700 (300) | 700 (300) | 500 (200) | 500 (200)
Nb metal layers - 4 8 8 10 10 10

- CUEET nm | 500(1000) | 500 (700) | 350 (500) | 350 (500) | 250 (300) | 180 (220)
Line width (space) | layers

Other layers nm 500 (700) | 500 (700) | 350 (500) | 250 (300)
Metal thickness nm 200 200 200 200 200 150
Dielectric thickness nm 200 200 200 200 200 180
Resistor width (space) nm | 1000 (2000) | 500 (700) | 500 (700) | 500 (700) | 500 (500) | 350 (350)
Shunt resistor value Q/sq 2 2 20r6 20r6 20r6 20r6
mQ resistor mQ - - 3-10 3-10 3-10 3-10
High kinetic inductance layer pH/sq - - 8 8 8 8
Via diameter (surround) nm 700 (500) 700 (500) | 500 (350) | 500 (350) | 350 (250) | 350 (200)
Via type, stacking ) Etched, Etched, Etched, Etched, | Stud/Plug, | Stud/Plug,
Staggered | Stacked \2/| Stacked \2/| Stacked \2/| Stacked Stacked

Early access availability - 2014 2015 2016 2016 2017

Beyond CMOS - 16
MAG 4/4/2016
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@ MIT-LL SFQ4ee Process

Junction
Layers
Wiring
Layers
Process Features Integration Scale Demonstrated

« Wafer size: 200 mm

« JJ technology: Nb/AI-AlIO,/Nb

e J.: 10 kA/cm? (100 pA/um?) baseline

« Number of Nb layers: 8

e Min JJ size: 700 nm

 Min wiring size: 500 nm

 Min spacing: 700 nm

» Full planarization of all layers by CMP
 Fab cycle time: <2.5 months, 8 wafers

 AC-biased SFQ shift registers with 32.8k
JJs (Semenov, 2015)

 RQL shift registers with 32.8k and 40k JJs
on achip (Herr, 2015)

 AC-biased SFQ shift registers with
65,000+ JJs per circuit (Semenov, SBU)

 AC-biased SFQ shift registers with
144,000+ JJs - under test (Semenov, SBU)
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@ SFQ5ee Process and Features to
- Increase Circuit Density

/

mQ resistor

High-K Layer ”

Enhancements over SFQ4ee:

* Min linewidth and spacing: 0.35 ym except M0, M1, and R5 (0.5 pm)

* Min size of vias and metal surround: 0.5 ym and 0.35 ym, respectively
« 2 Q/sq (Mo) or 6 Q/sq (MoN,) resistors for JJ shunting and biasing

* High kinetic inductance to enable compact bias inductors for ERSFQ
« mQ resistor between Nb layers M4 and M5

Beyond CMOS - 18 LINCOLN LABORATORY
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@ More Deeply Scaled Resistors

MoN, Resistors

sr A

e |ssue: shunt resistors occupy a
considerably larger area than JJs

* In SFQ4ee, resistors made from Mo

- w=05pum,R,=2Q/sq, 2A,, ~ 1 510,
Mm?2 Junction area, A, (um?)
- ROQL circuits use JJs with |, 6 Of 04T 0% 0
~35“A —-R~ 20 Q and 1 —w_=0580um,/ =17pm, R =20Q/sq |
’ 5 ——w_ =050 um, [ =12um, R =6Q/sq |
A, ~5um? >>A;-JJ area R O Wy,,= 0.35 um, /[, = 0.95 ym, R, = 6 Q/sq |
=
* In SFQ5ee, option for MoN resistors ‘f
- R,=6Q/sq, €,,=1.2 ym °§3
o]
- R=20Q, ~1um?2 2
Q
- T.<2K R
- Wafer 1o = 2.3% on patterned
resistors

Shunt resistor, R (Q2)

Beyond CMOS - 19 LINCOLN LABORATORY
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@ More Deeply Scaled Bias Circuitry

MoN, High-Kinetic-Inductance Layer

* Issue: Energy-efficient RSFQ
requires multiple 100-pH bias
inductors
— Conventional (geometric) inductor

occupies typically ~ 100 pm? area, L,
<1 pH/sq

,” High kinetic inductance region 1

/
’,

_' SFQS5ee /i
| R, target,
/0 -
M
iy

P

« Kinetic inductance L, of thin
superconducting films >> geometric
inductance:

— Need film thickness, d , to be much
thinner than penetration depth, A

AS ) L) - (%] {=2] ~J o =]
[ [P P

Critical temperature, T_(K)

—
L]
~

= 40 nm MoN_films| |

o

T 8 | . ] s T & |

0O 10 20 30 40 50 60

e For practica”ty: d~35nm-40nm, Sheet resistance at 10 K ((V/sq)
so A needs to be ~ 400 nm — 500 nm,

— MoNX with higher nitrogen content is
an effective choice

— Area savings: at L, = 10 pH/sq and w
=0.7 pm, A, ~ A /20

—_ad

Beyond CMOS - 20 ngh Kinetic
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]:[ Flux Trapping in More Deeply Scaled Circuits

mQ-range Resistors

o Issue: SFQ circuits are sensitive to iggg
flux trapping: external and internal 1200

— With circuit density increasing, flux & 1100
trapping could increase 2 1333
 Diminishing distance between S 800
flux-trapping moats and inductors s 700
T , o 600

« Diminishing size of the moats = 50,0

— Some SFQ cells are particularly = ggg
sensitive, cannot be reset S | apm

_ _ 10.0

e Possible remedies: 0.0

— Break some of the superconducting
loops by mQ-range resistors

— Improved circuit and moat design

* Fab solution: add extra resistive layer

— Resistor thickness required to be in the
‘green’ area is between 150 nm and 180
nm

— Pursuing Mo and MoNy resistors

- 4.0
- 3.0

- 2.0

¢ I
\ "//
\ i e
\\ [ ] A
=\ /’./
= \ i |
\ /f |
> [ ] ~ @lc ®Res
P~ SEANERRRERE
TN

- 1.0

00 30.0 60.0 90.0 120.0 150.0 180.0 210.0

Resistor thickness (nm)

C4 Via

~ 200 nmI

14 Via

! ~170 nm

10.0

- 9.0
- 8.0
- 7.0
- 6.0

5.0

Resistance (mohm)

0.0

Beyond CMOS - 21
MAG 4/4/2016

LINCOLN LABORATORY

MASSACHUSETTS INSTITUTE OF TECHNOLOGY



@ Higher Density Vias: Etched vs Stacked

Etched, Staggered Via Stacked Via

» Stacked vias pgrmlt 3.40 pm 0.5
— Decrease In size < > b —

— Increase in performance

 Have developed a stud via process Nb-3 =
that can be stacked , [ ]
— Nb-AI-Nb trilayer (without oxide) Nb-2 .
— Diameters down to 250nm : Nb-1
« Significant increase in complexity ’ ] L]
of the fabrication Nb-0
— 2Xincrease in metal dep, photo >
masks, CMP time (30% increase in _
number of steps) 360nm Stud Via Test Structure

— Complicates CMP: more stringent
density requirements, requires
higher uniformity

« |In parallel, pursuing a damascene,
CVD process for plug or plug+line
formation

Beyond CMOS - 22 LINCOLN LABORATORY
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]@[ Process Control Monitor (PCM) Test Data

PCM reticle included on all SFQ
wafers

— 3255 test structures on 16 chips
— 9*“drop-out” reticle shots per wafer

Complete room temperature testing

— Junction Jc’s, ‘spreads’ and
topography effects

— Via strings

— Snakes and combs on wiring layers

— Resistors

Selected cold temperature testing
— Junction Jc

— Inductor structures

— Line and via critical current

Extensive software
— Automated measurement
— Calculating parameters of interest

— Assessing process splits and historic
comparisons

Beyond CMOS - 23
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Critical Current, J- Wafer Map

JJ Room Temp Resistance Histograms

Number Yielded
o = %] (%] f=Y on (8] =
T T T T T T 1

Yield by Size, Die: F6, Drawn: 1.000um
SFQ417-15-1-7 (300K) - JJs - Repeatability with Res. - CH2

44 JJs - Repeatability with Res. - CH2
Mean (£): 19
STD (©): 0.39, or: 2.1%

10

156

20 25 30 35
Resistance (1)

40



@ Advanced Process Test Vehicle
\ - Flux Shuttle Shift Register

4" Gen Flux Shuttle Layout (15x10um)

» Best to test actual digital circuits

- Need a digital circuit scalable to
~1M JJs

- Measure margins of individual cells,
identify defects and trapped flux

« Employed a very old (before SFQ)
idea: ac-biased, inhomogeneous”
flux shuttle*

- 4 JJs per bit

. >~
- Stony Brook U design (V. Semenov) e | R~ | 5 ‘= %
: = n ¢ c o =
. Results Gen | #Bits | #JJs 3| = g g = g
- Can observe trapped flux and = © 23S
operation at cell level 1st 8k | 33k| 05 |40x17 | 0.6M | Func
- Cell operation variation: 1o = 1% ond | 16.4k | 66k | 0.4 |20x15|1.3M | Func
- Exceptional uniformity of -
4t | 80.2k | 321k | 0.4 |15x10 | 2.7M | Fab
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]@[ Outline

e Short history of SFQ fabrication and circuit develop
o State-of-the-art SFQ fabrication
= » Scaling limitations and EDA needs

e Summary
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Junction Limitations

Circuit Density Based on Josephson

[EEY
o
©

I L) I

—— 0.1 mA/pm?
- = -0.1 mA/um?
- = -0.5mA/um?| |
- = -2.5 mA/lum?

—_
——

[EEY
(@)
o

11 1111
->

i I ——

unshunted |

[EEN
o
\,

SFQ5ee

Maximum density of junctions, n, (cm?)

Q

(@)
[o)]
1 11 1 11911

* n,; = k/A;, fill factor k = 0.5
e Max density limited by the area of RSJ (~ 12 pm? per RSJ)
 10x increase if get rid of shunts |:> self-shunted JJs

50 100 150 200 250 300 350 400

Junction critical current, |_ (uA)

C

JX ——

?R R,

Resistively Shunted Junction

RS
|

o]l s

M5

M5
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@ Maximum Circuit Size (#JJs) Based on
Parametric Yield Limitations

8
« Circuit yield is determined by §10 NIRRT RN A
- Operating margins designed < | M=15% "/ 10% |/ 7% 5% i
into the circuit S 407 - | o /A,=2cm’
- Variation of the Ic’s in the JJs 8 : / L/ :
(Lower Ic’s have larger & 1 cm?
variations) = 10° .
@]
* Intersection of lines show 9
minimum Ic needed as a £ 10°+ i
function of # JJs and design E f
margin 2 10%; , —— KA A, k=05 |-
2 —— Y=90% :
- el % - --Y=50%

0 25 50 75 100 125 150 175 200 225 250
Junction critical current, /_ (uA)
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@ Circuit Density Based on Inductor Limitations

Circuit density is also limited
by inductors

- Each JJ requires an inductor,
value is dependent on Ic of JJ

Red and blue curves show
potential inductor density as a
function of

- Inductors on 1 or 2 layers

- Damping parameter of JJ

Need to choose Ic greater than
intersection of the inductor and
JJ density curves

Density of inductors and junctions (cm™)

—
o
o

—
o
o
N

——m =1,<8>=2
---m =1,<8>=3
—m =2,<>=2
---m =2,<4>=3

50 100 150 200 250 300 350 400

Average critical current, </ > (uA)
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]@[ Design Tool Limitations for SFQ Circuits

Electronic design automation (EDA) tools needed at all levels of SFQ design

Technology CAD (TCAD)

— Junction barrier design Standard Ce” DeS|gn FlOW
— Fabrication impact on component performance and (from SuperTools Proposer’s Day)
tolerance .
) ) L i Logic design
« Custom design flows: |-V based circuit simulation & logic synthesis ‘
— Compact models of Josephson junctions and other : =
components ,L
— Simulator for circuits with 100s of JJs (J-Spice) Circut dasi : [ Cell
. . ) ircuit design ol Library
— Analog circuit design & layout synthesis | ! >
« Standard-cell design flow: HDL based design J, - i
— S.tar?dard cells based on dl.ffer.ent design approaches - Ohweal Sesi ] TCAD
— Timing and data synchronization 5 vaiillcalinn }‘—
 Physical verification : '3 R |
— Layout versus schematic (LVS) ‘=== Fab & Test }' .-
— Magnetic design rules (flux trapping mitigation) —

Beyond CMOS - 29 LINCOLN LABORATORY
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[8] MIT-LL CMOS validated Design Flow

PDK Symbols and PDK P-cells, layer defs,

Metlisting Support display support
ethisting >uppo Isplay supp SVRF rule files

'_flutarnated Design

| |
| |
| Standard cell library Standard cell library |
| |
| |

Verilog models LEF file, cap table
Incisive RTL Compiler Encounter
- - - - - ]

« Example EDA flow that supports custom and standard cell designs
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@ SFQ Circuit Hypothetical Design Flow

Custom Design
Virtuoso JJSim Virtuoso

PDK Symbols and PDK P-cells, layer defs,
Netlisting Support Parameter sets display support

—_— ————— — — — — - — — — = M M M — — ]

Synopsys Liberty File

Verilog models file, cap table

|
|
|
| Standard cell library
|
| - .
| Incisive RTL Compiler Encounter

|
|
|
Standard cell library LEF |
|
|
|

Calibre

Novel Rule files

JWerify

 Modules requiring substantial modification are highlighted in red
« Maintain modularity and interface approaches common in CMOS EDA

Beyond CMOS - 31
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]@[ Outline

e Short history of SFQ fabrication and circuit develop
o State-of-the-art SFQ fabrication
e Scaling limitations and EDA needs

=P . Summary
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]@[ SFQ Fab is as Cheap as Dumbed-Down CMOS

Current IARPA programs to mature SFQ design and fabrication
are vital to the continued maturation of the technology

 IARPA C3 SFQ roadmap
— On track to develop circuits with JJ density > 1M/cm?
— On track to demonstrate circuits with > 1 MM JJs-
— 100X increase over state-of-the-art at program start

« With 3'd generation energy-efficient design techniques, limits to
the circuit density of < 10M JJs/cm?

— SFQ fab could be as cheep as dumbed-down Si processing

— Can use multi-chip module approaches for near and mid-term
demonstrations
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@ SFQ Circuit Technology is Immature:
Needs Continual Assessment of Goals

« SFQ has unique attributes that make it relevant for beyond
CMOQOS applications
— Potential for Landauer limit operation
— Potential for > 50 GHz clock speed
— Built-in quantized resources for mixed-signal applications

o Still relatively immature
— Impressive demonstrations that validate potential of the technology
— IARPA C3 program can solidify viability of the technology

— Further investments needed for
« Develop ‘industrial scale’ EDA tools
« Maturation of fabrication and testing infrastructure

« Potential paths beyond the C3 horizon
— Maturation of adiabatic quantum flux parametron
— Design approaches that are more tolerant of fabrication variations
— Novel device and circuit approaches for more deeply scaled nodes
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