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What 



Neuromorphic Computing 

• The integration of algorithms, architectures, and technologies, 
informed by neuroscience, to create new computational 
approaches. 
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Types of NMC 
• Neuromimicry #1 -- Building systems that faithfully characterize or replicate 

‘brain-like’ functionality to better understand the brain from a science/medical 
perspective 

Examples: 
Human Brain Project in Europe 
BRAIN initiative 
Allen Institute for Brain Science 

 

• Neuromimicry #2 -- Building systems that faithfully replicate ‘brain-like’ 
functionality to achieve ‘brain-like’ computing or capability 

Examples: 
Early Carver Mead work in visual and auditory IC designs 
DARPA SYNAPSE (IBM TrueNorth) 

 

• Neuromorphic engineering -- Utilizing available algorithms, architectures, and 
technologies (or developing new ones) to build computing systems that are 
optimal based on our current understanding of neuroscience, in order to provide 
computing capabilities ill-served by traditional models of computing 

Examples: 

Numerous – nVidia, Intel, Google, etc.  There is a lot of work going on here.  Our program is focused here. 
 

• Neural computing -- Iterative neuroscience-computer science explorations to 
develop theories of computation based on brain functionality 

Examples: 
IARPA MICrONs (Machine Intelligence from Cortical Networks) 
Sandia HAANA (Hardware Acceleration of Adaptive Neural Algorithms) 
Allen Institute for Brain Science 



Neural Networks – A typical NMC approach 
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The devil is in the details 
• How do you set up the network? 
Fully connected, recurrent, etc. 
 

• What data do you use? 
Supervised or unsupervised approaches 

 
• What is your learning algorithm? 
Backpropagation, CLA, Reinforcement approaches (Bayesian, decision trees) 
 

• How do your neurons function? 
Simple MACC, leaky-integrate and fire, convolutions, winner take all, spike-timing 
 
• What is your architecture? 
CPU/GPU, analog, spiking event representation, hybrid, etc. 



Example:  Our approach 

• Architectures that scale to handle real applications 
 Ohmic Weave 

 
• Methodologies and algorithms for 

designing/programming these systems  
 Loom 

 
• Experience & experiments with applications to guide 

architectures and methodologies 
 Malware Detection 



Implementing neurons using physics 

Image: Stan Williams, HP Labs via arstechnica.com 
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3x4 Crossbar = 2 Neurons 
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Ohmic Weave: Single Tile 
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256x256 memristor crossbar 

128 differential comparators 

All inputs and all outputs are sent to a central router 

256 axons, 128 neurons, 65536 synapses 



Ohmic Weave: 64 Tile General 
Purpose Processor* 

64 port router 
all-to-all connectivity 

16k axons 
8k neurons 

4M synapses  

*56 Tera synaptic ops per watt (TSOPS/W), 1.1 TSOPS/mm2 



Tools, Methodologies, Algorithms 

• Loom – Ohmic Weave design tool 
– Python classes with C, Cuda extensions 
– Enables exploration of design trade-offs 

• Weights with limited precision and ranges 
• Neural network topologies (layers, neurons per layer) 
• Connectivity pruning 

 

• Simulates Ohmic Weave designs on CPUs, GPUs 
• Debug with full view of internal state 



Methodology: Block Based Design 

• Decompose the problem into blocks 
– Much like block based CMOS design 
– Can pull blocks from a “circuit library” 

 
• Loom can compose blocks into a single larger network 

– Will optimize by removing unused neurons and 
connections 

– Compresses to minimum number of layers 
– Handles recurrence/loops 

 
 



Digital Hierarchical Neural Nets 

• Digital functions must be 100% correct 
 

• Divide and conquer by partitioning 
– 64 inputs = 1.6 x 1019 training vectors 
– 4 x 16 inputs = 2.56 x 105 training vectors 

 
• Reduce the training set size 

– But train to 100% accuracy 
– The logic truth table becomes the training set 
– The training data encompasses all possible data 

 



Training 

• Loom can train blocks given a training set or 
truth table 
– Uses the Concurrent Learning Algorithm* 
– Can train for exact logic or for inexact classifiers 

*M. McLean, “Concurrent Learning Algorithm and the Importance Map,” Network Science and Cybersecurity, ed. by R. Pino, Springer 2014, vol. 
55, pp. 239-250. 



Application:  Malware Detection 

• Classifies files as malware (e.g. virus) or 
benign 
– Looks at the file in 6 byte n-grams at a time 
– Matches 2000 critical n-grams, notes their 

presence in a 2000 bit latch 
– Uses a neural network classifier to decide if pattern 

in latch is malware 
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Conceptual Diagram 

About 4007 instances of 5 unique blocks 
About 5800 neurons in 5 layers 

 



Mapped to Ohmic Weave using Loom 

64 port router 
all-to-all connectivity 

Layer 1 

Layer 2 
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Unused 



Malware detection using neural nets: 
General purpose Ohmic Weave vs CPU 

Function Area (mm^2) Power (mW) 
Row Drivers 0.046 31.3 
Memristive Array 0.510 71.7 
Comparators 0.083 107.5 
Router 0.544 50.0 
Total 1.183 260.5 

CPU: 6 Core Intel Core i7 3930K; Throughput is 1.92 Gbps 
Ohmic Weave requires 1 neural net to match that throughput 
 
Numbers shown below are for a somewhat ‘optimistic’ Ohmic Weave implementation 

338x Improvement in Area 
307x Improvement in Power 



Why and when (or why now?) 



Lots of reasons 
• Moore’s Law 

 
Proliferated the amount and type of data that can be created and managed in digital 
form, enabling ‘non-scientific applications’ to provide value – business driver 
 
Created extremely low cost digital devices that need to be easy to use, and created the 
desire to use them for ‘non-scientific applications’ – consumer driver 
 
Enabled high speed networks and critical functions to be controlled from a distance 
simultaneously and cheaply – national security driver 
 
It’s ending – new opportunities for creativity in models of computing and architecture 
 
• NSCI 

 
• OSTP grand challenge 
 
 

National level interest and $$ 



OSTP Grand Challenge 

Create a new type of computer that can 
proactively interpret and learn from data, solve 
unfamiliar problems using what it has learned, 

and operate with the energy efficiency of the 
human brain. 



Examples 
• Sensory system based applications – robotics of various types 
Image processing, pattern recognition, speech recognition 
 
• Trend identification, prediction – analytics 
Multimodal inputs, high bandwidth, time sensitivity, anomaly 
detection 
 
• Decision making – human intelligence augmentation 
Model development, context awareness 
 



Cognitive Cybersecurity 
 

Scales with technology, not humans 
Able to rapidly deal with changes 
 
Level 1 – prevent (minimize) unauthorized access 
Level 2 – identify anomalous behavior 
Level 3 – contextual analysis for adversary intent 



Who and where 



Good things to look into – think interdisciplinary efforts 
• NICE (Neuro-inspired Computational Elements workshop) 
Run by Brad Aimone at Sandia, in California this year (Mar 7-9, 2016) 

 
• IJCNN (International Joint Conference on Neural Networks) or other major 

conferences 
This year you can spend time in Vancouver, Canada! (July 25-29, 2016) 

 
• IARPA MICrONS program 
Awards to Harvard, Baylor, Allen Institute, Princeton, and Carnegie-Mellon as primes 
They will probably be starting more projects in NMC 
 
• Neuromorphic computing forecast by RD at NSA 
Come see me about this one 
 
• China is becoming very active in this area 
China Brain-Inspired Computing Research (CBICR) program at Tsinghua University 



How 



Key challenges – at the high level* 

• “In particular, if one can identify a set of computational 
operations that a hardware system performs well, a directed 
abstraction from a complex biological system so as to 
emphasize those optimal operations and capture the desired 
function would be ideal.” 
 

• Neural theory, neural-inspired computing algorithms and 
architectures, and novel electronics capabilities 

*Brad Aimone et al, Sandia NMC forecast for RD 



Different computational primitives 
will become the common case: 

Majority function example 
Digital implementations are relatively inefficient for large numbers of inputs; 

MACC-centric design appears to have a large sweet spot 
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Key challenges – one level down 

• One shot learning, unsupervised learning, concept drift 
• Data reduction techniques 
• Building and curating credible and available data sets 
• Comprehensive modeling and simulation environments for 

iterative algorithm-architecture-technology co-design 
• Creating and maintaining multi-disciplinary teams 
• Brain imaging techniques that facilitate neural computing 

goals 
• Metrics for evaluating ‘brain-like’ systems 



A way to think about metrics* 

*A Model for Types and Levels of Human Interaction with Automation 
Raja Parasuraman, Thomas B. Sheridan, and Christopher D. Wickens 
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 3, MAY 2000 



Another version of a metric 

Ops/analyst 
Ops/trained analyst 
Learning rate for analysts 
Scaling rate 

World Class 
 
 

Expert 
 
 

Proficient 
 
 

Skilled 
 
 

Entry Level 
 
 

Novice 
Skill level pyramid 

How much of the pyramid can you 
augment with NMC? 



Novel electronics challenges 
• Interconnect density 

 
• Controlled growth of interconnects 
 
• Access devices (monolithic 3D) 

 
• Devices to vastly improve comparators and on-chip programming circuits 

 
• Efficient STDP/Spiking device – superconducting electronics? 

 
• Efficient analog comms (or efficient transducers to optical, magnetic, etc.); includes 

sensors 
 

• Memristors optimized for NMC 
 



High Endurance 

Memory: high speed, long retention, digital Neural – excellent analog behavior 

Resistance >1MΩ 

Low Voltage 

Low Energy 

Speed < 10 ns 

1-2 bit operation:  
NO overlap 

>6 bit operation: 
overlap allowed 

Retention >10 yr @ 
125°C 

Const. conductance 
change vs pulse 

Symmetric 
SET/RESET 

Required 

Symmetric 
SET/RESET 

NOT Required 

High Density 

Retention >24 hrs 
@ 85°C 

Speed < 500 ns 

*Courtesy of Dr. Matthew Marinella, Sandia National Labs 

Memristor characteristics of value* 



Acknowledgments to the NMC team that is 
making all this happen 
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Mark McLean 

 
along with a substantial number of academic, 

national lab and industry partners 





Contact Information 
• Laboratory for Physical Sciences 

– Advanced Computing Systems Research Program 
 

– Christopher D. Krieger 
• krieger@lps.umd.edu 

– David Mountain 
• davidjmountain@ieee.org 

– Mark McLean 
• mrmclea@lps.umd.edu 

mailto:krieger@lps.umd.edu
mailto:davidjmountain@ieee.org
mailto:mrmclea@lps.umd.edu


Questions? 


	��
	Outline
	What
	Neuromorphic Computing
	Types of NMC
	Neural Networks – A typical NMC approach
	The devil is in the details
	Example:  Our approach
	Implementing neurons using physics
	3x4 Crossbar = 2 Neurons
	Ohmic Weave: Single Tile
	Ohmic Weave: 64 Tile General Purpose Processor*
	Tools, Methodologies, Algorithms
	Methodology: Block Based Design
	Digital Hierarchical Neural Nets
	Training
	Application:  Malware Detection
	Slide Number 18
	Mapped to Ohmic Weave using Loom
	Malware detection using neural nets:�General purpose Ohmic Weave vs CPU
	Why and when (or why now?)
	Lots of reasons
	OSTP Grand Challenge
	Examples
	Cognitive Cybersecurity
	Who and where
	Good things to look into – think interdisciplinary efforts
	How
	Key challenges – at the high level*
	Different computational primitives will become the common case:�Majority function example
	Key challenges – one level down
	A way to think about metrics*
	Another version of a metric
	Slide Number 34
	Slide Number 35
	Acknowledgments to the NMC team that is making all this happen��Chris Krieger�Mark McLean��along with a substantial number of academic, national lab and industry partners
	Slide Number 37
	Contact Information
	Questions?

