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DRAM 

MEMORY IN TODAY’S SYSTEM 

Processor 

Memory 

Storage 

DRAM is critical for performance 
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MAIN MEMORY TRENDS 

1. Application pull 
- Increasing demand from applications  

 
2. Technology push 
 - Unfortunately DRAM scaling is ending 

3 



 
 
 
 
 
 
 
 
 
 

MAIN MEMORY TRENDS: 
1. INCREASING DEMAND 

Increasing demand for  
high performance, energy efficiency, 

and more capacity 

1. Data-intensive applications 
2. Exa-scale computing  
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DEMAND 1:  
DATA-INTENSIVE APPLICATIONS 
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Data to be analyzed is growing 
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EXAMPLE: 
LARGE HADRON COLLIDER (LHC) 

600 million collisions every second 

1 PB/sec 
generated 

1 out of 10000 
collected 

1 out of 100 
selected 

30 PB data analyzed per year 
Increasing demand on memory 
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DEMAND 2: 
EXASCALE COMPUTING 

Enables computational modeling, simulation, and 
prediction in science and technology  

 
 
 
 
 
 
 
 
 MOLECULAR  

DYNAMICS 
SUPER NOVA 
EXPLOSION  

PROTEIN  
FOLDING 

Can provide major improvement  
in different scientific fields 
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EXAMPLE: 
AERODYNAMIC MODELING TREND 

Reduces the number of physical tests for aircrafts 

 
 
 
 
 
 
 
 
 
 

Increasing demand on memory 
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MAIN MEMORY TRENDS: 
2. SCALING IS ENDING 
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DRAM scaling is getting difficult 
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DRAM SCALING CHALLENGE 

Technology 
Scaling 

DRAM Cells DRAM Cells 

Manufacturing reliable cells at low cost  
is getting difficult  
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1.52% of DRAM modules failed 
in Google Servers 

1.6% of DRAM modules failed 
in LANL 

IMPLICATION:  
DRAM ERRORS IN THE FIELD 

SIGMETRICS’09, SC’12  
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ENABLE   
HIGH CAPACITY MEMORY 

WITHOUT SACRIFICING 
RELIABILITY 

GOAL 
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DRAM 

ENABLE/RETHIN
K DRAM 

Difficult to scale 

NEW  
TECHNOLOGIES 

LEVERAGE NEW 
TECHNOLOGIES 

Predicted to be  
highly scalable 

TWO DIRECTIONS 
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SIGMETRICS’14, SIGMETRICS’16, 
 HPCA’15, DSN’15, DSN’16 

WEED’13, MICRO’15 



MAIN MEMORY CHALLENGES 

Technology 
Scaling 

DRAM Cells DRAM Cells 

NON-VOLATILE 
MEMORIES: 

UNIFIED MEMORY & 
STORAGE  

Non-Volatile 
Memory Storage 

UNIFY 

WHAT ELSE CAN WE DO? 

Detect 
and  

Mitigate 
Reliable  
System DRAM Cells 

SYSTEM-LEVEL 
TECHNIQUES: 

IMPROVE  
DRAM SCALABILITY 
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Reducing DRAM Timing 

Can we make DRAM more  
scalable without any cost?  



TRADITIONAL APPROACH 
TO ENABLE DRAM SCALING 

Unreliable 
DRAM Cells 

Reliable 
DRAM Cells 

Make 
DRAM 

Reliable 

Reliable System 

Manufacturing Time 
System  

in the Field 

DRAM has strict reliability guarantee 
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OUR APPROACH 

Unreliable 
DRAM Cells 

Reliable 
DRAM Cells 

Make 
DRAM 

Reliable 

Reliable System 

Manufacturing Time 
System  

in the Field 
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Manufacturing 
Time 

System  
in the Field 

Shift the responsibility to systems 



 
 
 
 
 
 
 
 
 
 

VISION: SYSTEM-LEVEL DETECTION 
AND MITIGATION 

Unreliable 
DRAM Cells 

Detect 
and  

Mitigate 

Reliable System 

Detect and mitigate errors after  
the system has become operational  
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ONLINE PROFILING 
Reduces cost, increases yield, 

and enables scaling 



 
 
 
 
 
 
 
 
 
 

CHALLENGE: INTERMITTENT FAILURES 

Unreliable 
DRAM Cells 

Detect 
and  

Mitigate 

Reliable System 

If failures were permanent, a simple  
boot up test would have worked 

How to detect and mitigate  
intermittent failures? 
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EFFICACY OF SYSTEM-LEVEL TECHNIQUES 
Can we leverage existing techniques? 

 
 
 
 
 
 
 
 
 
 

Testing 1 

Guardbanding 2 

Error Correcting Code 3 

Higher Strength ECC 4 

We analyze the effectiveness of these techniques  
using experimental data from real DRAMs 

20 Data set publicly available 



 
 
 
 
 
 
 
 
 
 

METHODOLOGY 

Evaluated 96 chips from three major vendors 

FPGA-based testing infrastructure 
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EFFICACY OF TESTING 
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Only a few rounds can 
discover most of the 

failures 

Even after hundreds of 
rounds, a small number 
of new cells keep failing 

Conclusion: Testing alone cannot detect  
all possible failures 

22 



 
 
 
 
 
 
 
 
 
 

   HIGHER STRENGTH ECC (HI-ECC) 

No testing, use strong ECC 
But amortize cost of ECC over larger data chunk  

Can potentially tolerate errors at the cost of 
higher strength ECC 
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After starting with 4EC5ED,  
can reduce to 3EC4ED code  

after 2 rounds of tests 
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EFFICACY OF HI-ECC 
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Can reduce to DECTED code  
after 10 rounds of tests 
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EFFICACY OF HI-ECC 

10 Years 

Can reduce to SECDED code, 
after 7000 rounds of tests 

 (4 hours) 

Conclusion: Testing can help to reduce the ECC 
strength, but blocks memory for hours 
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   Key Observations: 
• Testing alone cannot detect all possible failures 

 
 

• Testing can help to reduce the ECC strength 
– Even when starting with a higher strength ECC 
– But degrades performance 

 

 
 
 

CONCLUSIONS SO FAR 
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TOWARDS AN  
ONLINE PROFILING SYSTEM 

Initially Protect DRAM  
with Strong ECC 1 

Periodically Test 
 Parts of DRAM 2 

Test 

Test 

Test 

Mitigate errors and 
reduce ECC 3 

30 

Run tests periodically after a short interval  
at smaller regions of memory  



BREAKING THE ABSTRACTION 

• Samira Khan+, "The Efficacy of Error Mitigation Techniques for DRAM 
Retention Failures: A Comparative Experimental Study”, SIGMETRICS 
2014 

• Samira Khan+, "PARBOR: An Efficient System-Level Technique to 
Detect Data Dependent Failures in DRAM”, DSN 2016 
 

Architecture 

Circuits 

Operating System 

Problem 

How to schedule testing? 

How to implement testing  
in the hardware? 

What is the circuit-level characteristics  
of the failures? 

31 

How to reduce test time? 



MAIN MEMORY CHALLENGES 

Technology 
Scaling 

DRAM Cells DRAM Cells 

NON-VOLATILE 
MEMORIES: 

UNIFIED MEMORY & 
STORAGE  

Non-Volatile 
Memory Storage 

UNIFY 

WHAT ELSE CAN WE DO? 

Detect 
and  

Mitigate 
Reliable  
System DRAM Cells 

SYSTEM-LEVEL 
TECHNIQUES: 

IMPROVE  
DRAM SCALABILITY 
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TWO-LEVEL STORAGE MODEL 
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TWO-LEVEL STORAGE MODEL 
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PCM, STT-RAM 

NVM 

Non-volatile memories combine 
characteristics of memory and storage 



 
 
 
 
 
 
 
 
 
 

VISION: UNIFY MEMORY AND STORAGE 

C
P

U
 

P
ER

SISTEN
T

M
EM

O
R

Y
 

Provides an opportunity to manipulate 
persistent data directly 

Ld/St 

NVM 
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DRAM IS STILL FASTER 
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A hybrid unified  
memory-storage system 

C
P

U
 

M
EM
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Y
 Ld/St 
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NVM DRAM 



CHALLENGE: DATA CONSISTENCY 
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System crash can result in  
permanent data corruption in NVM 
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CRASH CONSISTENCY PROBLEM 

38 

Add a node to a linked list 

1. Link to next 2. Link to prev 

System crash can result in  
inconsistent memory state 



 
 
 
 
 
 
 
 
 
 

CURRENT SOLUTIONS 

39 

void hashtable_update(hashtable_t* ht, 
               void *key, void *data) 
{ 
   list_t* chain = get_chain(ht, key); 
   pair_t* pair; 
   pair_t updatePair; 
   updatePair.first = key; 
   pair = (pair_t*) list_find(chain,  
               &updatePair); 
   pair->second = data; 
} 

Example Code 
update a node in a persistent hash table  

Explicit interfaces to manage consistency 
– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11] 

 



 
 
 
 
 
 
 
 
 
 

CURRENT SOLUTIONS 

40 

void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, 
void*data){ 

  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 

  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 



 
 
 
 
 
 
 
 
 
 

CURRENT SOLUTIONS 

41 

void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, 
void*data){ 

  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 

  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual declaration of persistent components 



 
 
 
 
 
 
 
 
 
 

CURRENT SOLUTIONS 
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, 
void*data){ 

  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 

  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual declaration of persistent components 

Need a new implementation 



 
 
 
 
 
 
 
 
 
 

CURRENT SOLUTIONS 
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, 
void*data){ 

  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 

  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual declaration of persistent components 

Need a new implementation 

Third party code  
can be inconsistent 



 
 
 
 
 
 
 
 
 
 

CURRENT SOLUTIONS 
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void TMhashtable_update(TMARCGDECL  
hashtable_t* ht, void *key, 
void*data){ 

  list_t* chain = get_chain(ht, key); 
  pair_t* pair; 
  pair_t updatePair; 
  updatePair.first = key; 

  pair = (pair_t*) TMLIST_FIND(chain,  
               &updatePair); 
  pair->second = data; 
} 

Manual declaration of persistent components 

Need a new implementation 

Third party code  
can be inconsistent 

Prohibited 
Operation 

Burden on the programmers 



 
 
 
 
 
 
 
 
 
 

OUR SOLUTION: ThyNVM 

45 

Software transparent consistency  
in persistent memory systems 

• Execute legacy applications  

• Reduce burden on programmers  

• Enable easier integration of NVM 



NO MODIFICATION  
IN THE CODE 

void hashtable_update(hashtable_t* ht, 
               void *key, void *data) 
{ 
list_t* chain = get_chain(ht, key); 
pair_t* pair; 
pair_t updatePair; 
updatePair.first = key; 
pair = (pair_t*) list_find(chain,  
               &updatePair); 
pair->second = data; 
} 



 
 
 
 
 
 
 
 
 
 

RUN THE EXACT SAME CODE… 

Persistent Memory System 

Software transparent  
memory crash consistency 
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void hashtable_update(hashtable_t* ht, 

               void *key, void *data){ 

  list_t* chain = get_chain(ht, key); 

  pair_t* pair; 

  pair_t updatePair; 

  updatePair.first = key; 

  pair = (pair_t*) list_find(chain,  

         &updatePair); 

  pair->second = data; 

} 



 
 
 
 
 
 
 
 
 
 

ThyNVM APPROACH 

Running 

Epoch 0 Epoch 1 

time 

Checkpointing Running Checkpointing 
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Periodic checkpointing of data  

managed by hardware 

Transparent to application and system 



 
 
 
 
 
 
 
 
 
 

CHECKPOINTING OVERHEAD 

Running 

Epoch 0 Epoch 1 

time 

Checkpointing Running Checkpointing 
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1. Metadata overhead 

Working location Checkpoint location 

X X’ 

Y Y’ 

Metadata Table 

2. Checkpointing latency 



 
 
 
 
 
 
 
 
 
 

DRAM NVM 

1. DUAL GRANULARITY CHECKPOINTING 

High write locality pages in DRAM,  
low write locality pages in NVM 

Page Writeback  
in DRAM 

Block Remapping 
in NVM 
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GOOD FOR  
STREAMING WRITES 

GOOD FOR  
RANDOM WRITES 



 
 
 
 
 
 
 
 
 
 

Running 

time 

Checkpointing Running Checkpointing 

time 

Epoch 0 

Epoch 1 

Epoch 2 

Epoch 0 Epoch 1 
Running Checkpointing Running Checkpointing 

Running Checkpointing 

Epoch 0 Epoch 1 

2. OVERLAPPING  
CHECKOINTING AND EXECUTION 

Hides the long latency of Page Writeback  



 
 
 
 
 
 
 
 
 
 

UNMODIFIED 
LEGACY 
CODE  

TRANSPARENT DATA CONSISTENCY 

DRAM NVM 

-3.5% +2.7% 
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Provides consistency without  
significant performance overhead 

Cost of consistency compared to 

systems with zero-cost consistency 



BREAKING THE ABSTRACTION 

Architecture 

Circuits 

Operating System 

Problem 

Who provides consistency,  
persistency guarantee, instant recovery? 

How does hardware manage the  
hybrid memory?  

What is the circuit-level characteristics  
of the underlying technology? 

• Jinglei Ren+, “Dual-Scheme Checkpointing: A Software-Transparent 
Mechanism for Supporting Crash Consistency in Persistent Memory 
Systems”, MICRO 2015 

• Justin Meza+, “A Case for Efficient Hardware-Software Cooperative 
Management of Storage and Memory”, WEED 2013  

What interface do applications use to  
manipulate persistent data directly? 
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MAIN MEMORY CHALLENGES 

Technology 
Scaling 

DRAM Cells DRAM Cells 

NON-VOLATILE 
MEMORIES: 

UNIFIED MEMORY & 
STORAGE  

Non-Volatile 
Memory Storage 

UNIFY 

WHAT ELSE CAN WE DO? 

Detect 
and  

Mitigate 
Reliable  
System DRAM Cells 

SYSTEM-LEVEL 
TECHNIQUES: 

IMPROVE  
DRAM LATENCY & 

SCALABILITY 

54 



C
P

U
 

M
EM

O
R

Y
 

FUTURE TRENDS 

DRAM NVM LOGIC 
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Data movement is a major bottleneck 
Move compute closer to memory 



BREAKING THE ABSTRACTION 

Architecture 

Circuits 

Operating System 

Problem 

What is the interface? Who provides  
data consistency? 

How does hardware manage   
both data access and computation? 

What is the circuit-level characteristics  
of the underlying technology  
that enables computations? 

Which functions to offload? 
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FUTURE TRENDS 

DRAM NVM LOGIC 
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Take advantage of new technologies to 
move memory closer to compute 



BREAKING THE ABSTRACTION 

Architecture 

Circuits 

Operating System 

Problem 

How to manage TBs of on-chip memory? 

How should memory hierarchy look like 
when dense memory is on-chip? 

What is the circuit-level characteristics  
of the underlying technology  
that enables the integration? 

Which applications can take advantage  
of dense on-chip memory? 
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SUMMARY 
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Fix DRAM in innovative ways 
• Enable high density, reliable memory 

 
Integrate new memory technologies 
• Do not just replace, enhance 
• Enable new applications 

 
Rethink memory and storage hierarchy 
• Take advantage of non-volatility and in-

memory computation 
 



 
 
 
 
 
 
 
 
 
 

THANK YOU 

QUESTIONS? 
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