
FOR FUTURE COMPUTING SYSTEMS

Samira Khan
University of Virginia

April 5, 2016

RETHINKING
MEMORY AND STORAGE

BEYOND CMOS WORKSHOP

DRAM

MEMORY IN TODAY’S SYSTEM

Processor

Memory

Storage

DRAM is critical for performance

2

MAIN MEMORY TRENDS

1. Application pull
- Increasing demand from applications

2. Technology push
 - Unfortunately DRAM scaling is ending

3

MAIN MEMORY TRENDS:
1. INCREASING DEMAND

Increasing demand for
high performance, energy efficiency,

and more capacity

1. Data-intensive applications
2. Exa-scale computing

4

5

DEMAND 1:
DATA-INTENSIVE APPLICATIONS

0

10000

20000

30000

40000

50000

2010 2012 2014 2016 2018 2020

EX
A

B
Y

TE

YEAR

Source: IDC 2012

Data to be analyzed is growing

6

EXAMPLE:
LARGE HADRON COLLIDER (LHC)

600 million collisions every second

1 PB/sec
generated

1 out of 10000
collected

1 out of 100
selected

30 PB data analyzed per year
Increasing demand on memory

7

DEMAND 2:
EXASCALE COMPUTING

Enables computational modeling, simulation, and
prediction in science and technology

 MOLECULAR

DYNAMICS
SUPER NOVA
EXPLOSION

PROTEIN
FOLDING

Can provide major improvement
in different scientific fields

8

EXAMPLE:
AERODYNAMIC MODELING TREND

Reduces the number of physical tests for aircrafts

Increasing demand on memory

M
EM

O
R

Y

FLOPS
KILO MEGA GIGA TERA PETA EXA ZETTA

Source: Exascale Computing Report, DOE 2010

FUTURE

CURRENT

NINETIES

SEVENTIES
MEGA

GIGA

TERA

PETA

MAIN MEMORY TRENDS:
2. SCALING IS ENDING

1

10

100

1000

10000

1985 1995 2005 2015

M
EG

A
B

IT
S/

C
H

IP

START OF MASS PRODUCTION

Source: Flash Memory Summit 2013, Memcon 2014

DRAM scaling is getting difficult

9

DRAM SCALING CHALLENGE

Technology
Scaling

DRAM Cells DRAM Cells

Manufacturing reliable cells at low cost
is getting difficult

10

1.52% of DRAM modules failed
in Google Servers

1.6% of DRAM modules failed
in LANL

IMPLICATION:
DRAM ERRORS IN THE FIELD

SIGMETRICS’09, SC’12
11

ENABLE
HIGH CAPACITY MEMORY

WITHOUT SACRIFICING
RELIABILITY

GOAL

12

DRAM

ENABLE/RETHIN
K DRAM

Difficult to scale

NEW
TECHNOLOGIES

LEVERAGE NEW
TECHNOLOGIES

Predicted to be
highly scalable

TWO DIRECTIONS

13

SIGMETRICS’14, SIGMETRICS’16,
 HPCA’15, DSN’15, DSN’16

WEED’13, MICRO’15

MAIN MEMORY CHALLENGES

Technology
Scaling

DRAM Cells DRAM Cells

NON-VOLATILE
MEMORIES:

UNIFIED MEMORY &
STORAGE

Non-Volatile
Memory Storage

UNIFY

WHAT ELSE CAN WE DO?

Detect
and

Mitigate
Reliable
System DRAM Cells

SYSTEM-LEVEL
TECHNIQUES:

IMPROVE
DRAM SCALABILITY

14

Reducing DRAM Timing

Can we make DRAM more
scalable without any cost?

TRADITIONAL APPROACH
TO ENABLE DRAM SCALING

Unreliable
DRAM Cells

Reliable
DRAM Cells

Make
DRAM

Reliable

Reliable System

Manufacturing Time
System

in the Field

DRAM has strict reliability guarantee
16

OUR APPROACH

Unreliable
DRAM Cells

Reliable
DRAM Cells

Make
DRAM

Reliable

Reliable System

Manufacturing Time
System

in the Field

17

Manufacturing
Time

System
in the Field

Shift the responsibility to systems

VISION: SYSTEM-LEVEL DETECTION
AND MITIGATION

Unreliable
DRAM Cells

Detect
and

Mitigate

Reliable System

Detect and mitigate errors after
the system has become operational

18

ONLINE PROFILING
Reduces cost, increases yield,

and enables scaling

CHALLENGE: INTERMITTENT FAILURES

Unreliable
DRAM Cells

Detect
and

Mitigate

Reliable System

If failures were permanent, a simple
boot up test would have worked

How to detect and mitigate
intermittent failures?

19

EFFICACY OF SYSTEM-LEVEL TECHNIQUES
Can we leverage existing techniques?

Testing 1

Guardbanding 2

Error Correcting Code 3

Higher Strength ECC 4

We analyze the effectiveness of these techniques
using experimental data from real DRAMs

20 Data set publicly available

METHODOLOGY

Evaluated 96 chips from three major vendors

FPGA-based testing infrastructure

21

EFFICACY OF TESTING

0 100 200 300 400 500 600 700 800 900 1000

Number of Rounds

0

50000

100000

150000

200000
N

u
m

b
er

 o
f

F
a

il
in

g
 C

el
ls

 F
o
u

n
d ZERO ONE TEN FIVE RAND All

Only a few rounds can
discover most of the

failures

Even after hundreds of
rounds, a small number
of new cells keep failing

Conclusion: Testing alone cannot detect
all possible failures

22

 HIGHER STRENGTH ECC (HI-ECC)

No testing, use strong ECC
But amortize cost of ECC over larger data chunk

Can potentially tolerate errors at the cost of
higher strength ECC

23

1 10 100 1000 10000

Number of Rounds

4EC5ED, 2X Guardband

3EC4ED, 2X Guardband

DECTED, 2X Guardband

SECDED, 2X Guardband
1E+25

1E+20

1E+00

1E+15

1E+10

1E+05

1E-05

T
im

e
 t

o
 F

a
il

u
re

 (
in

 y
e
a

rs
)

EFFICACY OF HI-ECC

10 Years

24

1 10 100 1000 10000

Number of Rounds

4EC5ED, 2X Guardband

3EC4ED, 2X Guardband

DECTED, 2X Guardband

SECDED, 2X Guardband
1E+25

1E+20

1E+00

1E+15

1E+10

1E+05

1E-05

T
im

e
 t

o
 F

a
il

u
re

 (
in

 y
e
a

rs
)

EFFICACY OF HI-ECC

10 Years

25

1 10 100 1000 10000

Number of Rounds

4EC5ED, 2X Guardband

3EC4ED, 2X Guardband

DECTED, 2X Guardband

SECDED, 2X Guardband
1E+25

1E+20

1E+00

1E+15

1E+10

1E+05

1E-05

T
im

e
 t

o
 F

a
il

u
re

 (
in

 y
e
a

rs
)

EFFICACY OF HI-ECC

10 Years

After starting with 4EC5ED,
can reduce to 3EC4ED code

after 2 rounds of tests

26

1 10 100 1000 10000

Number of Rounds

4EC5ED, 2X Guardband

3EC4ED, 2X Guardband

DECTED, 2X Guardband

SECDED, 2X Guardband
1E+25

1E+20

1E+00

1E+15

1E+10

1E+05

1E-05

T
im

e
 t

o
 F

a
il

u
re

 (
in

 y
e
a

rs
)

EFFICACY OF HI-ECC

10 Years

Can reduce to DECTED code
after 10 rounds of tests

27

1 10 100 1000 10000

Number of Rounds

4EC5ED, 2X Guardband

3EC4ED, 2X Guardband

DECTED, 2X Guardband

SECDED, 2X Guardband
1E+25

1E+20

1E+00

1E+15

1E+10

1E+05

1E-05

T
im

e
 t

o
 F

a
il

u
re

 (
in

 y
e
a

rs
)

EFFICACY OF HI-ECC

10 Years

Can reduce to SECDED code,
after 7000 rounds of tests

 (4 hours)

Conclusion: Testing can help to reduce the ECC
strength, but blocks memory for hours

28

 Key Observations:
• Testing alone cannot detect all possible failures

• Testing can help to reduce the ECC strength
– Even when starting with a higher strength ECC
– But degrades performance

CONCLUSIONS SO FAR

29

TOWARDS AN
ONLINE PROFILING SYSTEM

Initially Protect DRAM
with Strong ECC 1

Periodically Test
 Parts of DRAM 2

Test

Test

Test

Mitigate errors and
reduce ECC 3

30

Run tests periodically after a short interval
at smaller regions of memory

BREAKING THE ABSTRACTION

• Samira Khan+, "The Efficacy of Error Mitigation Techniques for DRAM
Retention Failures: A Comparative Experimental Study”, SIGMETRICS
2014

• Samira Khan+, "PARBOR: An Efficient System-Level Technique to
Detect Data Dependent Failures in DRAM”, DSN 2016

Architecture

Circuits

Operating System

Problem

How to schedule testing?

How to implement testing
in the hardware?

What is the circuit-level characteristics
of the failures?

31

How to reduce test time?

MAIN MEMORY CHALLENGES

Technology
Scaling

DRAM Cells DRAM Cells

NON-VOLATILE
MEMORIES:

UNIFIED MEMORY &
STORAGE

Non-Volatile
Memory Storage

UNIFY

WHAT ELSE CAN WE DO?

Detect
and

Mitigate
Reliable
System DRAM Cells

SYSTEM-LEVEL
TECHNIQUES:

IMPROVE
DRAM SCALABILITY

32

TWO-LEVEL STORAGE MODEL

C
P

U

M
EM

O
R

Y

ST
O

R
A

G
E

VOLATILE

FAST

BYTE ADDR

NONVOLATILE

SLOW

BLOCK ADDR

Ld/St

FILE
I/O

DRAM

33

TWO-LEVEL STORAGE MODEL

C
P

U

M
EM

O
R

Y

ST
O

R
A

G
E

VOLATILE

FAST

BYTE ADDR

NONVOLATILE

SLOW

BLOCK ADDR

Ld/St

FILE
I/O

DRAM

34

PCM, STT-RAM

NVM

Non-volatile memories combine
characteristics of memory and storage

VISION: UNIFY MEMORY AND STORAGE

C
P

U

P
ER

SISTEN
T

M
EM

O
R

Y

Provides an opportunity to manipulate
persistent data directly

Ld/St

NVM

35

DRAM IS STILL FASTER

C
P

U

P
ER

SISTEN
T

M
EM

O
R

Y

A hybrid unified
memory-storage system

C
P

U

M
EM

O
R

Y
 Ld/St

36

NVM DRAM

CHALLENGE: DATA CONSISTENCY

C
P

U

P
ER

SISTEN
T

M
EM

O
R

Y

System crash can result in
permanent data corruption in NVM

C
P

U

M
EM

O
R

Y
 Ld/St

37

CRASH CONSISTENCY PROBLEM

38

Add a node to a linked list

1. Link to next 2. Link to prev

System crash can result in
inconsistent memory state

CURRENT SOLUTIONS

39

void hashtable_update(hashtable_t* ht,
 void *key, void *data)
{
 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;
 pair = (pair_t*) list_find(chain,
 &updatePair);
 pair->second = data;
}

Example Code
update a node in a persistent hash table

Explicit interfaces to manage consistency
– NV-Heaps [ASPLOS’11], BPFS [SOSP’09], Mnemosyne [ASPLOS’11]

CURRENT SOLUTIONS

40

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){

 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;

 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

CURRENT SOLUTIONS

41

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){

 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;

 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual declaration of persistent components

CURRENT SOLUTIONS

42

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){

 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;

 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual declaration of persistent components

Need a new implementation

CURRENT SOLUTIONS

43

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){

 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;

 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual declaration of persistent components

Need a new implementation

Third party code
can be inconsistent

CURRENT SOLUTIONS

44

void TMhashtable_update(TMARCGDECL
hashtable_t* ht, void *key,
void*data){

 list_t* chain = get_chain(ht, key);
 pair_t* pair;
 pair_t updatePair;
 updatePair.first = key;

 pair = (pair_t*) TMLIST_FIND(chain,
 &updatePair);
 pair->second = data;
}

Manual declaration of persistent components

Need a new implementation

Third party code
can be inconsistent

Prohibited
Operation

Burden on the programmers

OUR SOLUTION: ThyNVM

45

Software transparent consistency
in persistent memory systems

• Execute legacy applications

• Reduce burden on programmers

• Enable easier integration of NVM

NO MODIFICATION
IN THE CODE

void hashtable_update(hashtable_t* ht,
 void *key, void *data)
{
list_t* chain = get_chain(ht, key);
pair_t* pair;
pair_t updatePair;
updatePair.first = key;
pair = (pair_t*) list_find(chain,
 &updatePair);
pair->second = data;
}

RUN THE EXACT SAME CODE…

Persistent Memory System

Software transparent
memory crash consistency

47

void hashtable_update(hashtable_t* ht,

 void *key, void *data){

 list_t* chain = get_chain(ht, key);

 pair_t* pair;

 pair_t updatePair;

 updatePair.first = key;

 pair = (pair_t*) list_find(chain,

 &updatePair);

 pair->second = data;

}

ThyNVM APPROACH

Running

Epoch 0 Epoch 1

time

Checkpointing Running Checkpointing

48

Periodic checkpointing of data

managed by hardware

Transparent to application and system

CHECKPOINTING OVERHEAD

Running

Epoch 0 Epoch 1

time

Checkpointing Running Checkpointing

49

1. Metadata overhead

Working location Checkpoint location

X X’

Y Y’

Metadata Table

2. Checkpointing latency

DRAM NVM

1. DUAL GRANULARITY CHECKPOINTING

High write locality pages in DRAM,
low write locality pages in NVM

Page Writeback
in DRAM

Block Remapping
in NVM

50

GOOD FOR
STREAMING WRITES

GOOD FOR
RANDOM WRITES

Running

time

Checkpointing Running Checkpointing

time

Epoch 0

Epoch 1

Epoch 2

Epoch 0 Epoch 1
Running Checkpointing Running Checkpointing

Running Checkpointing

Epoch 0 Epoch 1

2. OVERLAPPING
CHECKOINTING AND EXECUTION

Hides the long latency of Page Writeback

UNMODIFIED
LEGACY
CODE

TRANSPARENT DATA CONSISTENCY

DRAM NVM

-3.5% +2.7%

52

Provides consistency without
significant performance overhead

Cost of consistency compared to

systems with zero-cost consistency

BREAKING THE ABSTRACTION

Architecture

Circuits

Operating System

Problem

Who provides consistency,
persistency guarantee, instant recovery?

How does hardware manage the
hybrid memory?

What is the circuit-level characteristics
of the underlying technology?

• Jinglei Ren+, “Dual-Scheme Checkpointing: A Software-Transparent
Mechanism for Supporting Crash Consistency in Persistent Memory
Systems”, MICRO 2015

• Justin Meza+, “A Case for Efficient Hardware-Software Cooperative
Management of Storage and Memory”, WEED 2013

What interface do applications use to
manipulate persistent data directly?

53

MAIN MEMORY CHALLENGES

Technology
Scaling

DRAM Cells DRAM Cells

NON-VOLATILE
MEMORIES:

UNIFIED MEMORY &
STORAGE

Non-Volatile
Memory Storage

UNIFY

WHAT ELSE CAN WE DO?

Detect
and

Mitigate
Reliable
System DRAM Cells

SYSTEM-LEVEL
TECHNIQUES:

IMPROVE
DRAM LATENCY &

SCALABILITY

54

C
P

U

M
EM

O
R

Y

FUTURE TRENDS

DRAM NVM LOGIC

55

Data movement is a major bottleneck
Move compute closer to memory

BREAKING THE ABSTRACTION

Architecture

Circuits

Operating System

Problem

What is the interface? Who provides
data consistency?

How does hardware manage
both data access and computation?

What is the circuit-level characteristics
of the underlying technology
that enables computations?

Which functions to offload?

56

C
P

U

M
EM

O
R

Y

FUTURE TRENDS

DRAM NVM LOGIC

57

Take advantage of new technologies to
move memory closer to compute

BREAKING THE ABSTRACTION

Architecture

Circuits

Operating System

Problem

How to manage TBs of on-chip memory?

How should memory hierarchy look like
when dense memory is on-chip?

What is the circuit-level characteristics
of the underlying technology
that enables the integration?

Which applications can take advantage
of dense on-chip memory?

58

SUMMARY

59

Fix DRAM in innovative ways
• Enable high density, reliable memory

Integrate new memory technologies
• Do not just replace, enhance
• Enable new applications

Rethink memory and storage hierarchy
• Take advantage of non-volatility and in-

memory computation

THANK YOU

QUESTIONS?

60

FOR FUTURE COMPUTING SYSTEMS

Samira Khan
University of Virginia

April 5, 2016

RETHINKING
MEMORY AND STORAGE

BEYOND CMOS WORKSHOP

